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ScienceDirect
Insect phylogenetics is being profoundly changed by many

innovations. Although rapid developments in genomics have

center stage, key progress has been made in phenomics, field

and museum science, digital databases and pipelines,

analytical tools, and the culture of science. The importance of

these methodological and cultural changes to the pace of

inference of the hexapod Tree of Life is discussed. The

innovations have the potential, when synthesized and

mobilized in ways as yet unforeseen, to shine light on the million

or more clades in insects, and infer their composition with

confidence. There are many challenges to overcome before

insects can enter the ‘phylocognisant age’, but because of the

promise of genomics, phenomics, and informatics, that is now

an imaginable future.
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Introduction
Our understanding of the evolutionary Tree of Life has

grown dramatically over the last few decades, driven in

part by the need for knowledge about the Tree. As the

conduits along which genetic information has flowed, the

branches of the Tree of Life are the pathways along which

organismal diversity that we see today was formed. Knowl-

edge of the branching (and anastomosing) patterns of the

Tree form a vital underpinning to all of comparative

biology: any study of multiple specimens is informed by

the historical pathways of genes that connected the speci-

mens. Our explanations of the similarities and differences

of two specimens that belong to closely related species will

differ from our interpretations if they are distantly related,

on branches whose ancestors separated hundreds of mil-

lions of years ago. Although Darwin [1] understood the

importance of considering phylogenetic relationships
www.sciencedirect.com 
when interpreting evolutionary patterns (‘We may often

falsely attribute to correlated variation structures which

are common to whole groups of species, and which in truth

are simply due to inheritance’), it only came to be under-

stood broadly by the biological community a few decades

ago, beginning with the seminal paper by Felsenstein [2].

Much of the effort to reconstruct a complete picture of the

Tree of Life will need to focus within insects. With nearly

a million described species, and over half of all known

species [3], hexapods include a significant portion of the

Tree. A full view of their phylogeny will require inferring

about a million clades, a number that will increase as more

species are discovered.

Over the last few decades we have made tremendous

progress in understanding the shape of deeper portions of

insect phylogeny, and within scattered groups at finer

scales. Most attention has focused on the ancient nodes of

the tree, and we have resolved several key aspects in that

region [4��]. For example, we are now confident that

Polyneoptera are monophyletic [5��], and Strepsiptera

are related to beetles, not flies [5��]. Substantial progress

has been made in family-level relationships within several

orders (e.g., in Lepidoptera [6,7]), and at various levels

within scattered families. However, we are far from a full

understanding of insect phylogeny, with many parts of

the tree unresolved and unstudied. Some of these are

ancient branches that have been well-studied, but with-

out resolution; for example, relationships of Collembola,

Protura, and Diplura are not yet clear [4��]. Most of the

more recent divergences are unstudied, as many thou-

sands of species have never been included in any phylo-

genetic analysis, morphological or molecular.

Progress has been made through a rapidly shifting land-

scape of methods and approaches that have changed

profoundly over the last decade. While not perhaps reach-

ing the depth of worldview-altering Kuhnian paradigm

shifts [8], they have nonetheless significantly altered our

current understanding of insect phylogeny, and will set

the vision for future research. We are entering a time in

which genetic and phenotypic data need not be limited

except by inherent limits in the organism, in which the

focus is shifting toward how we can best store, distribute,

analyze, and present massive quantities of data and

results. Even field and museum methods are undergoing

notable shifts, which could enable or hinder progress. A

decade ago we might not have been able to imagine a

future in which we understand with confidence the

phylogeny of insects, but today we can envisage such a

future, although there are many challenges to overcome.
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The genomics revolution
A major engine of this change has been development of

relatively inexpensive methods to sequence significant

portion of genomes: the cost of genomic sequencing has

dropped to less than 0.0000026 of what it was in 2001

(Wetterstrand KA. DNA Sequencing Costs: Data from the

NHGRI Genome Sequencing Program (GSP), https://

www.genome.gov/sequencingcostsdata/). As sequencing

methods are invented and compete (Glen T. The

2016 Next-Generation Sequencing Field Guide Preview:

Zombie Systems and New Hope, http://www.

molecularecologist.com/2016/03/2016-ngs-field-guide-

preview/), the trend of reducing costs will surely continue,

and will further increase the availability, worldwide, of

genomic data.

The cost of sequencing a whole genome varies tremen-

dously within insects, as their genome size ranges from

less than 200 Mb in various flies, beetles, and wasps to

16.6 Gb in grasshoppers [9]. However, even for the largest

insect genomes it is now possible to obtain 20� coverage

for relatively low cost; the price for such sequencing at

Center for Genome Research and Biocomputing at Ore-

gon State University is about $8000. The cost is not yet

trivial, and considering the millions of insects that will

need to be sequenced to both understand the fine-scale

phylogeny around the species boundaries and the deeper

branches, from both developed and developing countries,

some method of reducing the cost further is necessary.

Reduced-representation methods save costs by diminish-

ing the portion of the genome to be sequenced. These

include transcriptome sequencing [e.g., 5] and targeted

enrichment or hybrid capture; the latter biases sequenc-

ing effort toward genomic sections that hybridize to

designed probes [10]. These two methods provide data

that can be compared in phylogenetically distant taxa, and

thus can be incorporated more easily into future studies.

They can also yield relatively long fragments whose

genes trees might be more accurately inferred (although

this has been challenged because of the consequent

increase in probability of recombination points within

the sequence [11]). By contrast, genotype-by-sequencing

(GBS) [12] or restriction-site associated DNA sequencing

(RADSeq) [e.g., 13] choose more or less random sites in

the genome and sequence relatively small fragments at

those sites. They have the advantage of easier and

cheaper data generation from more regions spread

throughout the genome, and have minimal setup costs

[14]. However, GBS and RADSeq produce data from

anonymous loci whose orthologs are less likely to be

sequenced in phylogenetically distant taxa, making the

methods more useful for studies within younger clades

[15]. For the same reason, the data from GBS and RAD-

Seq cannot as easily be incorporated into data from other

taxa (at least not until full genomes are available as

context) [14].
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With sequence data limited only by the DNA content of

the organism, we may hope to fully resolve with surety the

phylogeny. This has been accomplished with some ordi-

nal-level relationships in insects that were elusive, such as

the placement of Hymenoptera, which has now been

confidently determined [5��,16]. Extensive sequence data

will not always suffice, however: even with 413 459 amino

acid sites, the relationships of Odonata, Ephemeroptera,

and Neoptera has not been confidently resolved, suggest-

ing the need for metagenomic characters and additional

taxon sampling [5��]. We should not always expect that the

result of phylogenomic studies will be a well-supported

dichotomous tree: in some cases the internodes will be

nonexistent (i.e., there was effectively simultaneous di-

vergence into three or more lineages) or are so short as to

yield many conflicting gene trees [e.g., 17]; this is

expected to be true even at old branch points within

the tree [18].

Phenomics: the return of morphology
Genomics has not provided the only data windfall in

insect phylogenetics. After an early reliance on morphol-

ogy to supply markers needed for phylogenetic inference,

and subsequent neglect with the rise of DNA sequencing

technologies, structural data is undergoing a revival. A

core driver of this is the need for a time-calibrated

phylogeny by downstream consumers of phylogenetic

knowledge, and the consequent necessity of incorpo-

ration of dated fossils into analyses. As morphological

matrices are required to properly incorporate fossils in a

phylogenetic analysis [19�,20], the task of gathering mor-

phological data has been revived [21,22,23��,24�]. The

discovery of important new fossil sites [25], including

additional Cretaceous amber deposits, has also reinvigo-

rated insect morphology.

The flourishing of phenomics is spurred by new meth-

odological developments, both in data-gathering tools and

in knowledge-representation methods. MicroCT and

confocal microscopy, for example, offer unprecedented

three-dimensional reconstructions of insect structure

[22,23��], and efficient means of digitally capturing large

quantities of data much more rapidly than traditional,

eyes-to-the-microscope methods. Also significant is for-

malization of ways to describe and communicate about

morphological traits through ontologies [26��], as embod-

ied, for example, in the Phenoscape project (http://

phenoscape.org). These developments have the potential

to allow morphological data to enter the high-throughput

world that to date has been the domain of genomics.

Efficiency and taxes in the field and museum
As most specimens in the world’s museums were not

killed and stored in ways designed to preserve DNA or

RNA, additional collecting is often warranted. This effort

is being transformed by new tools for collecting (e.g.,

LED-based UV light traps [27]) and documenting field
www.sciencedirect.com
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sites (smartphones, drones). Extensive online data (e.g.,

aerial photos and street views) guide us to potential field

sites; portable digital devices containing (or connecting

to) the world’s literature and images allow for informed

in-the-field decisions. ‘Third-generation’ sequencing

methods [28], through which extensive data can be gath-

ered in the field via very small hand-held sequencing

devices, will also revolutionize the efficiency of field

work, allowing quick feedback about sampling strategies.

But not all changes have led to greater efficiency. The

increasing regulation of collecting, exporting, and import-

ing insects has led to a ‘time tax’, requiring an increasing

commitment of time and funds to writing numerous and

diverse permit applications and subsequent reports. Some

faunas in biodiversity hotspots have become effectively

impossible to sample because of bureaucratic burden or

presence of absolute restrictions. To my knowledge there

has not been a study of this problem and its effects on

phylogenetics, but I suspect any active phylogeneticist

who studies a widely distributed clade has encountered

roadblocks that deter research.

A partial workaround is the discovery that many dried

insects already in the world’s museums contain sufficient

DNA to yield sequence data of at least multi-copy genes

(e.g., mitochondrial and ribosomal) when next-generation

sequencing methods are applied [29,30�]. This should

enable most known species of insects to be incorporated

into molecular phylogenetic studies, although often with

relatively few genes.

New methods enable more efficient decisions about

specimens to examine in depth. These include image

recognition systems [31], and sequencing of a diagnostic

gene fragment for less than $1 per specimen [32]. The

increasing digitization of the world’s collections (see, e.g.,

iDigBio, https://www.idigbio.org) will also play a notable

role in enabling better choices about specimens from

which we should gather data.

Digital data, workflows, algorithms, and
software
The massive quantities of data and results that are being

produced about insects need efficient systems in which

they can be safely stored, through which they can flow,

and via which they can be interconnected and analyzed.

The many data objects (about collecting events, speci-

mens and their derivatives such as DNA extractions,

morphological data, molecular data, and analytical results)

that a modern lab needs to manage in the face of less-

than-ideal digital tools puts an upper limit on throughput,

and the number of species that can be studied phyloge-

netically is thereby limited. Progress on developing sys-

tems that will bring order to poorly organized,

insufficiently linked and tracked data is being made.

One tool that promises to help the data-gathering phase
www.sciencedirect.com 
is TaxonWorks (http://taxonworks.org), which should in-

crease pace and volume. Repositories such as GenBank,

MorphBank (http://morphbank.net), MorphoBank (http://

morphobank.org), and TreeBase (http://treebase.org) can

store primary data long term. Data annotation and ex-

change standards (e.g., [33]) allow efficient data flow and

reuse. New phylogeny inference tools are being continu-

ally developed (e.g., [34–36,37�,38]). More systems are

being developed to take advantage of the Semantic Web.

For example, OpenTree [39��] provides synthesis of

resulting phylogenetic trees, built with scalability in mind,

and with application programming interfaces (APIs) that

allow easy harvesting by other elements in a workflow

pipeline. There is an outburst of innovation in compara-

tive biology, including methods synthesized in Arbor

[40��], a scalable system for post-tree analysis of trees

from OpenTree and elsewhere.

An efficient system to tackle all of insect phylogeny will

require greater openness to data sharing and collabora-

tion. The increasing awareness of the benefits of openly

available data [41] are key to the effort. Cultural changes

toward open and distributed science (http://

opensciencefederation.com, [42]) and credit systems ac-

knowledging the diversity of contributions in systematics

[43] should increase the pace. Although formalizing credit

for newer publication formats is vital for this enterprise,

adoption may be slow; for example, this journal excludes

websites, computer programs, and databases from formal

citation in reference lists.

However, there are major challenges that must be over-

come, each of which could serve as the impetus for a

focused research effort. For example, a complete taxo-

nomic name resolution service (e.g., [44]), which is need-

ed to allow databases to share data about a taxon, is far

from being fully implemented; without it there will be

major barriers in the flow of information. Similarly, deter-

mining which sequences in one taxon are orthologs to

those in a second taxon is a crucial step still requiring

refinement [45]. Although we can quickly have thousands

of genes at our disposal, we cannot appropriately model all

of them, and yet methods, such as posterior predictive

simulations [46�,47], to determine which genes we can

properly analyze, are just starting to be developed. The

complexity of gene tree diversity caused by recombina-

tion, and its subsequent effects on the meaning of the

species tree [48] and our ability to infer it [11,49] will need

to be more satisfactorily resolved. Once phylogenetic

results are obtained, our ability to synthesize them into

a more global view is limited, in part because of the lack of

community involvement in depositing information into

repositories such as TreeBase, and thus inspiring more

extensive data deposition will be required. Once synthe-

sized, we cannot easily visualize our results, as tree

visualization has yet to produce an accepted focus-plus-

context visualization [50] for a phylogeny the size of the
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hexapod tree. And, finally, as databases and software

systems grow in complexity and require teams of people

to develop and maintain, and the interdependence of

these systems compels each to survive for decades, the

need to develop communities and funding structures that

enable sustainability will become more urgent [51].

The trajectory of insect phylogenetics
Phylogenetics of insects began with a head start relative to

many other taxa, as the leader in early development of

explicit phylogenetic inference methods was Willi Hennig

[52], with his 1969 tome Die Stammesgeschichte der Insekten
[53] standing as a major early milestone in phylogenetics.

Although phylogenetic thinking has permeated systematic

entomology for decades, the size of the insect branch

means we have only completed a fraction of the task,

even with the availability of new genomic, phenomic, and

informatic tools. The size of the unknown parts of the

insect clade also means that a significant fraction of

systematic research on insects is still (appropriately) dom-

inated by species discovery and documentation.

Insect phylogenetics has been both enabled and slowed

down by the nature of insects. By contrast to other

extremely diverse clades, such as fungi and bacteria, most

insect specimens can be easily preserved in their original

exoskeletal form (or nearly so) in museums. They exhibit

complex, developmentally well-canalized structures that

are of a size suitable for examination under common

microscopes (and those of the 1800s and 1900s). These

traits encouraged a rich history of morphological research

that provided data for Hennig and other researchers.

Their complex structures and our ability to see them

have allowed us to uncover their diversity. This legacy of

enormous known diversity and abundant morphological

data and specimens has been tremendously valuable, but

it may also have hindered the transition to the digital and

‘omics’ world. Microbial groups, similarly diverse (if not

more so), but with fewer specimens in collections, and a

much less extensive literature in morphological system-

atics, and many fewer described species, with much

smaller genomes [54,55], have the potential to leapfrog

insect phylogenetics by the necessity of embracing mod-

ern tools, in similar fashion to the leapfrogging observed

in the more-thorough or rapid adoption of technological

tools in developing countries [56]. Insect phylogenetics

will need to examine its legacy, and determine which

parts of our existing resources in collections and on paper

can serve as a springboard rather than a burden as we

embrace newer tools and data.

Will insects enter the phylocognisant age?
In smaller, more extensively studied clades, for which

comprehensive phylogenies have been constructed

through the phases (morphological, Sanger-sequencing-

based molecular, and now genomic) of phylogenetics, the

‘phylocognisant age’ is at hand or on the horizon: an era in
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which we know with confidence most of the phylogeny

from ancestral node to species. For example, in birds, this

age appears close at hand: the B10K project seeks to

sequence the genome of all 10 000+ species of living birds

by 2020 [57], and thereby reconstruct the phylogeny of

birds. One can envisage that Avian phylogeny may be

resolved to a relatively fine resolution (even if not

completely: [58]) within 10 years.

It will take significantly longer for insects to enter the

phylocognisant age. Much of the community focus to date

has been on deeper nodes of insect phylogeny, but most

of the branches within insects are more recent, within

families. Most studies in evolutionary processes, ecology,

physiology, and so forth that require observations of

repeated patterns on the phylogeny will be most informed

by these abundant, shallower branchings. The first re-

search project that deciphers the phylogeny of a 10 000-

species clade in insects may be considered ‘transforma-

tive’, cutting edge research that is so coveted by funding

agencies. Deciphering the phylogeny of the 90th such

clade likely would not, and it is unclear how the extensive

but necessary work to map the whole tree might be

funded. However, a full tree of insect life will be vital

if we are to avail ourselves of the fruits of comparative

biology within this giant clade. One can hope that the

need for this will lead to a rethinking of our approach to

phylogenetics, perhaps by the development of radical

new methods, and synthesis of old ones, into an effort

that can tackle a tree with over a million branches.
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