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Insects are the most speciose group of animals, but the phylogenetic relationships of many
major lineages remain unresolved. We inferred the phylogeny of insects from 1478
protein-coding genes. Phylogenomic analyses of nucleotide and amino acid sequences,
with site-specific nucleotide or domain-specific amino acid substitution models, produced
statistically robust and congruent results resolving previously controversial phylogenetic
relationships.We dated the origin of insects to the Early Ordovician [~479 million years ago
(Ma)], of insect flight to the Early Devonian (~406 Ma), of major extant lineages to the
Mississippian (~345 Ma), and the major diversification of holometabolous insects to the
Early Cretaceous. Our phylogenomic study provides a comprehensive reliable scaffold for
future comparative analyses of evolutionary innovations among insects.

I
nsects (1) were among the first animals to
colonize and exploit terrestrial and freshwa-
ter ecosystems. They have shaped Earth’s
biota, exhibiting coevolved relationships with
many groups, from flowering plants to hu-

mans. They were the first to master flight and
establish social societies. However, many as-
pects of insect evolution are still poorly under-
stood (2). The oldest known fossil insects are
from the Early Devonian [~412 million years ago
(Ma)], which has led to the hypothesis that in-
sects originated in the Late Silurian with the
earliest terrestrial ecosystems (3). Molecular

data, however, point to a Cambrian or at least
Early Ordovician origin (4), which implies that
early diversification of insects occurred in marine
or coastal environments. Because of the absence
of insect fossils from the Cambrian to the Silurian,
these conclusions remain highly controversial. Fur-
thermore, the phylogenetic relationships among
major clades of polyneopteran insect orders—
including grasshoppers and crickets (Orthoptera),
cockroaches (Blattodea), and termites (Isoptera)—
have remained elusive, as has the phylogenetic
position of the enigmatic Zoraptera. Even the
closest extant relatives of Holometabola (e.g.,
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beetles,moths and butterflies, flies, sawflies, wasps,
ants, and bees) are unknown. Thus, in order to
understand the origins of physiological andmor-
phological innovations in insects (e.g., wings and

metamorphosis), it is important to reliably re-
construct the tempo andmode of insect diversifi-
cation. We therefore conducted a phylogenomic
study on 1478 single-copy nuclear genes obtained
from genomes and transcriptomes representing
key taxa from all extant insect orders and other
arthropods (144 taxa) and estimated divergence
dates with a validated set of 37 fossils (5).
Phylogenomic analyses of transcriptome and

genome sequence data (6) can be compromised
by sparsely populated data matrices, gene paral-
ogy, sequence misalignment, and deviations from
the underlying assumptions of applied evolution-
ary models, which may result in biased statistical
confidence in phylogenetic relationships and tem-
poral inferences. We addressed these obstacles by
removing confounding factors in our analysis (5)
(fig. S2).
We sequencedmore than 2.5 gigabases (Gb) of

cDNA from each of 103 insect species, which
represented all extant insect orders (5). Addition-
ally, we included published transcript sequence
data that met our standards (table S2) and offi-
cial gene sets of 14 arthropods with sequenced
draft genomes (5), of which 12 served as refer-
ences during orthology prediction of transcripts
(tables S2 and S4). Comparative analysis of the
reference species' official gene sets identified 1478
single-copy nuclear genes present in all these
species (tables S3 and S4). Functional annotation
of these genes revealed that many serve basic
cellular functions (tables S14 and S15 and figs. S4
to S6). A graph-based approach using the best
reciprocal genome- and transcriptome-wide hit
criterion identified, on average, 98% of these genes
in the 103 de novo sequenced transcriptomes, but
only 79% and 62% in the previously published
transcriptomes of in- and out-group taxa, respec-
tively (tables S12 and S13).
After transcripts had been assigned and aligned

to the 1478 single-copy nuclear-encoded genes,
we checked for highly divergent, putatively
misaligned transcripts. Of the 196,027 aligned
transcripts, 2033 (1%) were classified as highly
divergent. Of these, 716 were satisfactorily re-
aligned with an automated refinement. How-
ever, alignments of 1317 transcripts could not be
improved, and these transcripts were excluded
from our analyses (supplementary data file S5,
http://dx.doi.org/10.5061/dryad.3c0f1).
Nonrandomdistribution ofmissing data among

taxa can inflate statistical support for incorrect
tree topologies (7). Because we detected a non-
random distribution of missing data, we only
considered data blocks if they contained infor-
mation from at least one representative of each
of the 39 predefined taxonomic groups of un-
disputedmonophyly (table S6). In this represent-
ative data set, the extent of missing data was still
between 5 and 97.7% in pairwise sequence com-
parisons, with high percentages primarily because
of the data scarcity in some previously published
out-group taxa (table S19 and figs. S7 to S10).
We inferred maximum-likelihood phylogenetic

trees (Fig. 1) with both nucleotide (second-codon
positions only and applying a site-specific rate
model) and amino acid–sequence data (applying

a protein domain–based partitioning scheme to
improve the biological realism of the applied
evolutionary models) from the representative
data set (5) (figs. S21, S22, and S23, A and D).
Trees from both data sets were fully congruent.
The absence of taxa that cannot be robustly
placed on the tree (rogue taxa) in the amino acid–
sequence data set and the presence of a few
rogue taxa that did not bias tree inference in the
nucleotide sequence data set (5) indicated a suf-
ficiently representative taxonomic sampling.
To detect confounding signal derived from

nonrandom data coverage, we randomized ami-
no acids within taxa, while preserving the dis-
tribution of data coverage in the representative
data set (5). This approach revealed no evidence
of biased node support that could be attributed
to nonrandom data coverage (5) (figs. S11 and
S12 and table S20). Phylogenomic data may
violate the assumption of time-reversible evolu-
tionary processes, irrespective of what partition
scheme one applies, which could lead to in-
correct tree estimates and biased node support.
Because sections in the amino acid–sequence
alignments of the representative data set violat-
ing these assumptions were present, we tested
whether the observed compositional heteroge-
neity across taxa biased node support but found
no evidence for this (5) (fig. S20). We next dis-
carded data strongly violating the assumption
of time-reversible evolutionary processes (tables
S21 and S22, data files S6 to S8, and figs. S13 to
S19). Results from phylogenetic analysis of this
filtered data set (5) were fully congruent with
those obtained from analyzing the unfiltered
representative data set. The nucleotide sequence
data of the representative data set containing
also first and third codonpositions strongly violated
the assumption of time-reversible evolutionary
processes, but still supported largely congruent
topologies (fig. S23, B to D). In summary, our
phylogenetic inferences are unlikely to be biased
by any of the above-mentioned confounding factors.
Our phylogenomic study suggests an Early

Ordovician origin of insects (Hexapoda) at ~479Ma
[confidence interval (CI), 509 to 452 Ma] and a
radiation of ectognathous insects in the Early
Silurian ~441Ma (CI 465 to 421Ma) (Figs. 1 and 2).
These estimates imply that insects colonized
land at roughly the same time as plants (8), in
agreement with divergence date estimates on
the basis of other molecular data (4).
The early diversification pattern of insects has

remained unclear (2, 7, 9). We received support
for amonophyly of insects, including Collembola
and Protura as closest relatives (10), and Diplura
as closest extant relatives of bristletails (Archae-
ognatha), silverfish (Zygentoma), and winged in-
sects (Pterygota) (Fig. 1). Furthermore, our analyses
corroborate Remipedia, cave-dwelling crustaceans,
as the closest extant relatives of insects (11, 12).
A close phylogenetic relationship of bristletails

to a clade uniting silverfish and winged insects
(Dicondylia) is generally accepted. However, the
monophyly of silverfish has been questioned,
with the relict Tricholepidion gertschi considered
more distantly related to winged insects than
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Fig. 1. Dated phylogenetic tree of insect relationships.The tree was inferred through a maximum-likelihood analysis of 413,459 amino acid sites divided into
479 metapartitions. Branch lengths were optimized and node ages estimated from 1,050,000 trees sampled from trees separately generated for 105 partitions
that included all taxa (5). All nodes up to orders are labeled with numbers (gray circles). Colored circles indicate bootstrap support (5) (left key).The time line at
the bottom of the tree relates the geological origin of insect clades to major geological and biological events. CONDYLO, Condylognatha; PAL, Palaeoptera.
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Fig. 2. Sorted ordinal and interordinal node age estimates. For each labeled
node (numbers on the left and right of the figure correspond to the node labels
in the tree of Fig. 1), the median (red bar), and the range of the upper and lower
confidence interval (black rectangle) of age estimates are illustrated. These
medians and upper and lower confidence intervals are derived from uniformly
sampled trees over all 105 metapartitions (5). Additionally, we present medians

of age estimates separately derived from each metapartition. Within the bean
plot (gray scale), blue bars indicate the distribution of median age estimates,
large blue bars indicate the inferred median of medians. All node age estimates
refer to the estimated common origin of included species. Stem-lineage repre-
sentatives can, of course, be older. The maximum root age of the tree was set
to 580 Ma to coincide with the oldest Ediacaran fossils (5).
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other silverfish (13). We find that silverfish are
monophyletic, consistent with recently published
morphological studies (14), and estimate that
Tricholepidion diverged from other silverfish
in the Late Triassic (~214Ma) (Figs. 1 and 2). This
result implies parallel and independent loss of
the ligamentous head endoskeleton, abdominal
styli, and coxal vesicles in winged insects and
silverfish (5).
The diversification of insects is undoubtedly

related to the evolution of flight. Fossil winged
insects exist from theLateMississippian (~324Ma)
(15), which implies a pre-Carboniferous origin of
insect flight. The description of †Rhyniognatha
(~412Ma) from amandible, potentially indicative
of a winged insect, suggested an Early Devonian
to Late Silurian origin of winged insects (3). Our
results corroborate an origin of winged insect
lineages during this time period (16) (Figs. 1 and
2), which implies that the ability to fly emerged
after the establishment of complex terrestrial
ecosystems.
Ephemeroptera andOdonata are, according to

our analyses, derived from a common ancestor.
However, node support is low for Palaeoptera
(Ephemeroptera +Odonata) and for a sister group
relationship of Palaeoptera to modern winged in-
sects (Neoptera), which indicates that additional
evidence, including extensive taxon sampling and
the analysis of genomic meta-characters (17), will
be necessary to corroborate these relationships.
We find strong support for the monophyly of

Polyneoptera, a group that comprises earwigs, stone-
flies, grasshoppers, crickets, katydids (Orthoptera),
Embioptera, Phasmatodea, Mantophasmatodea,
Grylloblattodea, cockroaches, mantids, termites,
and Zoraptera (18–20). We estimated the origin of
the polyneopteran lineages at ~302 Ma (CI 377 to
231 Ma) in the Pennsylvanian (Figs. 1 and 2), con-
sistent with the idea that at least part of the rich
Carboniferous neopteran insect fauna was of poly-
neopteran origin. Finally, our analyses suggest that
themajor diversitywithin living cockroaches,man-
tids, termites, and stick insects evolved after the
Permian mass extinction.
Given that the oldest known fossil hemipterans

date to the Middle Pennsylvanian (~310 Ma) (21),
it had been thought that the stylet marks on liv-
erworts from the Late Devonian (~380 Ma) (22)
could not have been of hemipteran origin. Our
study indicates that true bugs (Hemiptera) and
their sister lineage, thrips (Thysanoptera), all of
which possess piercing-sucking mouthparts, orig-

inated ~373 Ma (CI 401 to 346 Ma), which gives
support to the possibility of a hemipteroid origin
of Early Paleozoic stylet marks.
True bugs, thrips, bark lice (Psocoptera), and

true lice (Phthiraptera) (together called Acercaria)
were thought to be the closest extant relatives of
Holometabola (Acercaria + Holometabola =
Eumetabola) (10). However, convincing morpho-
logical features and fossil intermediates support-
ing amonophyly of Acercaria are lacking (13).We
recovered bark and true lice (Psocodea) as likely
closest extant relatives ofHolometabola (5), which
suggests that both groups started to diverge in
the Devonian-Mississippian ~362 Ma (CI 390 to
334Ma) (Figs. 1 and2).However, this result didnot
receive support in all statistical tests and, therefore,
should be further investigated in future studies
that embrace additional types of characters (17).
We estimated that the radiation of parasitic

lice occurred ~53 Ma (CI 67 to 46 Ma), which
implies that they diversified well after the emer-
gence of their avian andmammalian hosts in the
Late Cretaceous–Early Eocene and contradicts the
hypothesis that parasitic lice originated on fea-
thered theropod dinosaurs ~130 Ma (23).
Within Holometabola, our study recovered

phylogenetic relationships fully congruent with
those suggested in recent studies (2, 24, 25).
Althoughwe estimated the origin of stem lineages
of many holometabolous insect orders in the Late
Carboniferous, we dated the spectacular diver-
sifications within Hymenoptera, Diptera, and
Lepidoptera to the Early Cretaceous, contem-
porary with the radiation of flowering plants
(21, 26). The almost linear increase in interordinal
insect diversity suggests that the process of di-
versification of extant insects may not have been
severely affected by the Permian and Cretaceous
biodiversity crises (Fig. 2).
With this study, we have provided a robust

phylogenetic backbone tree and reliable time
estimates of insect evolution. These data and
analyses establish a framework for future com-
parative analyses on insects, their genomes,
and their morphology.
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