

New Jersey Agricultural Experiment Station

Biology and Management of the Annual Bluegrass Weevil

Albrecht Koppenhöfer Rutgers Cooperative Extension

Updated 2-11-2022

ABW Biology and Control

- Biology, ecology, damage (3-24)
- Monitoring (25-37)
- Insecticide resistance (38-75)
- Sustainable management: non-resistant (76-92)
- Sustainable management: resistant (93-101)
- Biorationals (102-118)

ABW Biology and Control

- Biology, ecology, damage
- Monitoring
- Insecticide resistance
- Sustainable management: non-resistant
- Sustainable management: resistant
- Biorationals

- Serious expanding pest of close-cut annual bluegrass
- Serious problems throughout NJ, NY, CT, PA, RI, MA, NH, VT, DE, MD.
- Also problems in parts of OH, ME, VA, ONT, QUE.

ABW

ABW Morphology

ABW

Adult

- Short, blunt snout with mouthparts at tip
- Elbowed antennae attached near snout tip
- Length of snout+head+thorax < elytra
- Body dark charcoal-gray, covered with fine yellowish hair and scales that wear off with age
- /8" 5/32" long

ABW

Larva

- Cream colored body, brown head
- Body somewhat curved, pointed at tail, legless
- 0.03 (L1) to 0.2" (L5) long

Billbug

Annual Bluegrass Weevil

Adult Overwintering

Adult extraction by submersion of substrate samples in warm water

Adults overwinter in the top 1-2"of soil/turf profile, under taller grass, under tree litter, around trees, even in roughs

Adult Overwintering

- Overwinter up to 200' from fairway and up to 30' into the woods
- Most abundant near tree lines and around trees
- No beetles found within 15' of fairway
- Pine litter not best site prefer tall grass and mixed leaf litter

Adult spring migration to playing surfaces

- arrival spread out over several weeks because:
- \rightarrow affected by variably spring temps
- \rightarrow converging from different overwintering sites
- \rightarrow more than 1 peak if cool temps interrupt migration
- primarily on foot

Eggs laid under sheath

ABW Life Cycle

Pupation in soil

1st Signs of Larval Feeding Damage (late May)

- Usually starts at edges of fairways, greens, tees.
- Small, yellowish-brown spots
- Scattered dead spots grow together.
- Tunneled stems break off at crown.

Extensive Larval Feeding Damage (early to -mid June)

- Worst damage early to mid-June (1st gen.).
- Usually less damage in late July/early August (2nd gen.).

ABW

Injury

Damage to collar

R. Cameron

Early summer damage along edge of fairway

Damaged Poa surrounded by undamaged bentgrass

H. Tashiro

B. McGi

ABW Seasonal Life-cycle (average timing for NY metropolitan area)

*L1-3 = 1st thru 3rd larval stage; L4-5 = 4th thru 5th larval stage

From: Koppenhöfer et al. 2012

Host plant resistance for ABW management

- Low cost
- Highly compatible with other tactics
- Long lasting
- Environmentally sound

Host plant resistance components:

Tolerance: plant tolerates feeding better, but may support high pest density

Resistance: detrimental for pest development and reproduction \rightarrow fewer/no pests

Host Plant Resistance to ABW

- Severe damage typically in areas with high *P. annua* percentage
- But damage to bentgrass possible

Limited previous experimental data suggest:

- Same larval density in *P. annua* and CBG (Rothwell 2003)
- No effect of host species on spring adult and larval distribution (McGraw & Koppenhöfer 2010)
- Higher ABW tolerance of pure CBG vs. mixed stands of CBG + *P. annua* (McGraw & Koppenhöfer 2009)

Larval density and damage in mixed *Poa* – creeping bentgrass stands

Egg-laying - Choice field tests 10 females + 10 males for 1 wk

- \rightarrow *P. annua* preferred for oviposition.
- \rightarrow No clear differences among bentgrasses

Kostromytska & Koppenhöfer (2014)

Egg-laying + Larval Development

No-choice greenhouse test

5 fem. + 5 males for 1 wk → Stages after 5 wk

- More stages in *P. annua* than in bentgrasses
- Creeping bentgrasses have the fewest larvae.
- BUT: ABW fully develops in all bentgrasses

Kostromytska & Koppenhöfer (2014)

Tolerance to larval feeding - Greenhouse tests

3rd-4th instars introduced (0, 71, 142, 284 / ft²)

- P. annua most susceptible
- 'Capri' (Colonial), 'Villa' (Velvet) most susceptible bentgrasses
- No significant difference among creeping bentgrasses

Effect of grass cultivar and adult density on grass damage by progeny larvae (greenhouse) 100 0 adults Pearson's correlation 90 а ∎3♀ 3♂ r (322) = 0.78 , *P* < 0.01 а 80 ■6♀6♂ 70 % ■ 12♀ 12♂ 60 Damage 50 b b bb 40 bc bc bc 30 bc bc b 20 b bc 10 a aÇ а a Villa Greenwich 0 P.annua 001 Penneross ation capri, iger 11 **Creeping BG Colonial BG** Velvet BG

Host Plants – Summary:

- Poa annua preferred for egg laying, better for larval development, and least tolerant grass.
- Creeping bentgrasses can be damaged but much less likely, much less intensive, and can recover better.
- →Best preventive control for ABW problems: Keep P. annua percentage as low as possible wherever possible using cultural practices and herbicides !!!

ABW Biology and Control

- Biology, ecology, damage
- Monitoring
- Insecticide resistance
- Sustainable management: non-resistant
- Sustainable management: resistant
- Biorationals

- Forsythia full bloom → overwintering adults become active
- Migration from overwintering sites to playing surfaces has started.
- Adult densities on playing surfaces increase during full bloom.

- Forsythia ½ gold : ½ green
- Eastern redbud early bloom
- \rightarrow peak adult densities on playing surfaces
- \rightarrow best time to spray vs. overwintered adults
- But: blooming variable
 → Don't rely on just 1 or 2 plants.

- Flowering clogwood full bloom
- Eastern redbud full bloom
 - \rightarrow egg-laying has begun
 - \rightarrow adulticides ineffective

- Catawba Rhododendron hybrid full bloom
 - \rightarrow larvae start appearing in soil
 - \rightarrow curative larvicides.

*L1-3 = 1^{st} thru 3^{rd} larval stage; L4-5 = 4^{th} thru 5^{th} larval stage

From: Koppenhöfer et al. 2012

Degree-Day Models

- Predict insect activities and fine-tune treatment timing.
- Baseline developmental temperature for most insects 50°F.
- Calculate degree-day (GDD) units for each day:

<u>(min.temp. + max.temp.)</u> - baseline temp 2

- Add up average GDD units for each day
 → GDD accumulation
- No values < 0!

Degree-Day Accumulation (base 50 = GDD₅₀)

Date	Max Temp	Min Temp	Total	Ave	Minus 50 for baseline	DD Accumu- lation
4/13	58	40	98	4 9	0	0
4/14	66	42	108	54	4	4
4/15	70	46	116	58	8	12
4/16	75	49	124	62	12	24
4/17	71	47	118	5 9	9	33

Degree-Day Recording

- For best regular updates:
 - -Use own weather station data to calculate GDDs.
 - -Use weather/GDD trackers, ideally more than 1 per GC.

Degree-Day Correlations for NJ

Observation	GDD ₅₀	GDD ₅₀ Range
Forsythia full bloom	<mark>4</mark> 6	<mark>23–69</mark>
Forsythia 50:50	1 <mark>5</mark> 8	113 – <mark>21</mark> 0
Dogwood full bloom	188	139–280
L1.5	298	265–291
L2.0	331	264–338
Rhodo full bloom	389	306-444
L2.5	396	390–425
L3.0	486	413–560
L3.5	540	409–553
L4.0	636	618–746

Linear Pitfall Traps to monitor adult movement (not good estimate of adult densities)

Monitoring Adults - Grass clippings

- Many adults picked up by mowers
- Extraction: ~15% on green but < 1% on fairways
- Adult numbers in standard samples should be correlated to population built-up
- BEWARE: 70% of adults survive mowing undamaged → discard clippings with significant adult numbers away from playing.

Monitoring Adults Vacuuming

- Inverted leaf blower to suck adults into an inserted sieve basket
- Between Forsythia full bloom and ½ gold : ½ green
- Extraction: ~30% on green,
 ~5% on fairways
- →number of adults sucked up indicator of ensuing larval populations

Vacuum sampling adults : Standardize your sampling plan (1-2x/week) → count ABW and chart numbers

What I do: 5 vac samples (20 sec. ea) from 5 collars 1x per week at 11 ann = 40 MINS MUSS BUNG

Monitoring adults: Soap flush

- 1 fl oz. lemon scented liquid dishwashing detergent per gal of water (0.8%)
- Spread 1 pt (~500 ml) solution per 1'x1' area at 0 minutes and again at 5 minutes.
- Collect adults after ~5, 10, 15 (20) minutes
- Multiple samples per area
- Recovers > 75% of adults
- Water afterwards to avoid SCALD!!!

Monitoring – All Stages

- In spring, start with Rhododendron full bloom
- Cut turf cores with turf plugger (2.3" diam) or knife (1-2" deep).
- Break up soil and thatch on a tray and count insects.

For more detail: Submerge material in lukewarm water \rightarrow remaining pupae, larvae, adults float up in 5-10 min.

Adequately irrigated turf can tolerate 30-50 larvae/ft²

Monitoring – All Stages More precise method

- Break 2.5" diam cores into 3-4 pieces
- Submerge in lukewarm water saturated with salt for 1 hr.
- Stir after 1, 20, and 40 min.
- Collect and count stages floating to the surface

ABW Biology and Control

- Biology, ecology, damage
- Monitoring

Insecticide resistance

- Sustainable management: non-resistant
- Sustainable management: resistant
- Biorationals

ABW Resistance to Insecticides

- Many GCs apply >3 treatments per season, up to 10 per season !!!
- \rightarrow suggests resistance to insecticides.
- Many resistant populations detected !
- Likely that most GCs with > 5 years of intensive insecticide use vs. ABW have some level of resistance!

ABW Survey 12/2014–2/2015

	No. of	ABW applic. / year			Resistance
Region	responses	Avg.	> 5 (%)	> 9 (%)	suspected (%)
All Regions	291	3.9	18	6	(19)
North.Periph.	13	2.2	0	0	0
MA	33	4.4	13	10	0
СТ	25	4.2	20	12	48
NY	56	4.1	18	14	29
LI	20	5.5	30	20	55
Upstate	26	2.3	0	0	8
NJ	32	4.4	23	0	28
PA	74	4.2	24	1	22
DE-MD-VA	42	3.6	17	0	5
South.Periph.	16	2.9	0	0	0

(McGraw & Koppenhöfer 2017)

Resistance to Insecticides

- Resistance result of artificial selection pressure in favor of genes that convey ability to survive toxin exposure
- Genes controlling resistance mechanisms already present before exposure in 0.01–1% of population
- In resistant populations, frequency of resistance genes up to 97%.

Model assuming simple genetics of Resistance

- $S = original gene version \rightarrow susceptible$
- R = mutated gene version \rightarrow resistant
- Insects have 2 copies of each gene that controls a resistance mechanism
- \rightarrow SS = individual fully susceptible
- \rightarrow **RR** = individual fully resistant
- \rightarrow **R**S = intermediate resistance level

Simple Model of Resistance Development 1st Generation: before application

SS 🗢 RS 🗢 RR 🗢 \bigcirc $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ **Insecticide efficacy:** SS = 90%; RS = 60%; RR = 0%

Simple Model of Resistance Development 1st Generation: after application

SS 🗢

RS 🗢

RR 🗢

 \bigcirc

Simple Model of Resistance Development 2nd Generation: before application

SS 🗢 RS 🗢 RR 🗢 \bigcirc \bigcirc $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ Insecticide efficacy: SS = 90%; RS = 60%; RR = 0%

Simple Model of Resistance Development 2nd Generation: after application

Simple Model of Resistance Development 3rd Generation: before application

SS 🗢 RS 🗢 \bigcirc RR 🗢 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc Insecticide efficacy: SS = 90%; RS = 60%; RR = 0%

Simple Model of Resistance Development 3rd Generation: after application

Simple Model of Resistance Development 4th Generation: before application

SS 🗢 RS 🗢 RR 🗢 \bigcirc $\bigcirc \bigcirc \bigcirc$ \bigcirc **Insecticide efficacy:** SS = 90%; RS = 60%; RR = 0%

Simple Model of Resistance Development 4th Generation: after application

Simple Model of Resistance Development 5th Generation: before application

Simple Model of Resistance Development 5th Generation: after application

Rate of Resistance Development

Likely begins with 1^{st} application but at first slow \rightarrow unnoticed for several years.

Rate depends on:

- R allele dominance: more dominant \rightarrow faster
- Generation turnover: takes10-15 generations
- Population mobility: influx of SS slows rate
- Al persistence: more persistent \rightarrow faster
- Selection pressure: greater \rightarrow faster

Insecticide Resistance Mechanisms

- Behavioral: ability to avoid lethal toxin dose (increased sensitivity/irritability)
- Reduced cuticular penetration
- Target site insensitivity: reduced affinity of receptor sites to AI
- Increased detoxification (metabolic): overexpression or amplification of genes coding detoxifying enzymes

Resistance Interactions

- Cross-resistance: resistance to one Al automatically makes resistant to another (even without exposure).
- Multiple resistance: different mechanisms for each of several affected insecticides
- Resistance factors normally don't occur alone
- \rightarrow Different factors may interact synergistically.

- 1. Use of resistant natural enemies:
- Not available for any turfgrass pest

2. Use of new, unaffected MoA:

- Increasingly difficult to find and develop new MoAs.
- Not much in pipeline.

→ Don't count on the next silver bullet !

3. Use of synergists:

- If increased detoxification involved, certain compounds can interfere with detoxifying enzymes.
- E.g., piperonyl butoxide (PBO) interferes with major detoxifying system in ABW.
- But too unstable in sunlight for outdoor applications

4. Use of insecticide mixtures:

- Concept: extremely unlikely that resistance mechanisms for both Als present in same individual
- <u>But !!!</u>: Resistance to both Als has in some cases developed rapidly.
- Cross-resistance possible
- Especially risky if pest already resistant to one of the Als

- 5. Reducing R gene frequency:
- Use short persistence insecticides
- Leave refugia for SS (no wall-to-wall apps)
- Treat only most susceptible life stage

- 6. MoA rotation:
- Do not use same MoA more than once per generation
- <u>Do not use same MoA vs. consecutive</u> <u>generations.</u>
- Same MoA should skip several generations, the more the better.
- May lead to reduction of R, but only if fitness cost involved with R

7. Field monitoring of resistance:

- By the time resistance obvious through failures, R frequency too high for implementation of effective and simple resistance management → more drastic changes required.
- Petri dish test detects ABW resistance but not sensitive enough to determine level of resistance
- More sensitive tools in development

Resistance in ABW

- On GCs with history of intensive insecticide use, particularly of pyrethroids
- Resistance seems primarily based on increased enzymatic detoxification.
- Continued intensive insecticide use
 - \rightarrow involvement of up to 3 detox. systems
 - → up to 343x rate required to kill in lab tests !!!

Resistance in ABW

- Increased detoxification particularly problematic because not very specific
 - → Cross-resistance very common !!
 - → In extreme cases most available Als affected !!!
 - →MoA rotation no guarantee for resistance delay
- Limited resistance to chlorpyrifos (up to 20x) already observed.

Baseline susceptibility and cross resistance

 Topical bioassay to determine LDs (≤ 72 h) for important Als.

Topical Assay LD_{50} / RR_{50} @ 72 h

Several other MoAs also affected, lower RR₅₀s

Kostromytska et al. (2018a)

Greenhouse Assay LC₅₀ / RR₅₀ @ 72 h

RR₅₀s similar in greenhouse

Field efficacy vs. ABW populations with different resistance levels

Field efficacy vs. ABW populations with different levels of resistance

Insecti- cide class	ΑΙ	Trade name	Rate (Ib ai/ac)	Targets Ad / L1 / L3		
Pyrethroid	Bifenthrin	Talstar	0.100	Х		
Organo-	Chlorpyrifos	Dursban	1.000	Х		
phosphate	Trichlorfon	Dylox	6.000			Х
Spinosyn	Spinosad	Conserve	0.400	Х		Х
Oxadiazine	Indoxacarb	Provaunt	0.225	Х		Х
Anthranilic	Chlorantraniliprole	Acelepryn	0.156		Х	Х
diamide	Cyantraniliprole	Ference	0.156		Х	Х
Neonicotin.	Clothianidin	Arena	0.247		Х	Х

Resistance - Recommendations

- Reduce synthetic insecticide use.
- Shift control measure more towards larvae.
- RR₅₀ > 50: concentrate on larvae using Ference (L1-4), Conserve/MatchPoint (L3-4), Provaunt (L3-4) (and Dylox [L3-4]).
- RR₅₀ > 100: Ference (L1-4), Conserve/ MatchPoint (L3-4) (and Provaunt [L3-4]).
- RR₅₀ > 100: rotate with biorationals!

Petri dish Validation Assay

9 cm dish, 1 filter paper 1 ml solution, 10 adults

Bifenthrin (Talstar)

Kostromytska et al. (2018b)

Petri dish Validation Assay

9 cm dish, 1 filter paper 1 ml solution, 10 adults

Chlorpyrifos

Kostromytska et al. (2018b)

48 h

72 h

Resistance Level Assay -Conclusions

- Petri dish assay easy option for ABW resistance detection and monitoring
 - Sufficient discriminating power
 - Easy to set up and conduct
- One rate to separate susceptible and resistant population
- Two rates to estimate resistance level

Don't breed your own Super Weevil !!!

- 1. DON'T do repeated applications with the same insecticide class (e.g. pyrethroids, OPs).
- 2. DON'T exceed label rates.
- 3. DON'T do 'wall-to-wall' applications.
- 4. Spray as little as possible by practicing good Integrated Turf Management

ABW Biology and Control

- Biology, ecology, damage
- Monitoring
- Insecticide resistance
- Sustainable management: non-resistant ABW
- Sustainable management: resistant
- Biorationals

Most Successful Programs

Include monitoring to make decisions
 Minimize sprays – in time & space
 Get good 1st generation control of larvae

To Get Good Control... Monitoring is Essential !!

Forsythia still a good predictor
Start of migration (FULL BLOOM)
Peak densities = ½ Gold, ½ Green

Combine with insect counts
 – Soapy flushes, vac sampling, pitfall traps

Ideal Timing of ABW Applications (Timing for NY metropolitan area)

*Ad = adult; L1-3 = 1st – 3rd larval stage; L4-5 = 4th – 5th larval stage Larvicides: Conserve, Provaunt, Dylox
*Adulticides: Pyrethroids, chlorpyrifos, Conserve, Provaunt

Koppenhöfer et al. 2012

Why 1st Generation Control is Important

- Overwintering adults can lay many eggs over many weeks
 – Avg. 60 to 90 eggs/female
 – Over up to 15 weeks
- Overlap in stages decrease effectiveness of controls
 - Larvae protected in stem
 - Pupae not susceptible

Does it make sense to apply adulticides before adult densities peak on playing surface?

- NY: 3-year study:
 - Few adults feed on migration
 - Adults don't lay eggs before peak densities reached
- Our recommendation: Wait for peak adult densities!

Problems with pre-peak applications

- unnecessary kill of beneficials
- increased exposure of adult ABW to sublethal insecticide concentrations
- \rightarrow less control
- \rightarrow additional applications
- \rightarrow faster resistance development !!

Sustainable ABW Management

Most effective and sustainable option:

Work to reduce Poa as much as possible wherever possible.

Start on fairways.

Sustainable ABW Management

- Minimize adult treatments
- <u>Concentrate on larvae</u>
- → Allows more precise monitoring → more targeted treatments → less R selection
- → Softer on natural enemies → rebuild safety net of biological control → less R selection

Managing <u>non-resistant</u> ABW while reducing risk for resistance development

- Tailor applications to pest pressure.
- You cannot eradicate ABW!
- Excessive insecticide use may release ABW (and other pests) from suppression by natural enemies and can lead to resistant populations.
- \rightarrow Don't follow a 'program' blindly.
- \rightarrow Monitor populations throughout season
- \rightarrow Applications only when/where needed.

Risk assessment

Determine risk for ABW damage based on:

- Percentage *Poa annua* in turf area
 → *P. annua* particularly susceptible
- History of ABW problems
 → tend to show up in same areas.
- Monitoring

 \rightarrow base treatment decisions on observed larval and/or adult densities.

Insecticide Efficacy vs. ABW

DeltaGard (deltamethr.) Tempo (cyfluthrin) Talstar (bifenthrin) Scimitar (λ-cyhalothr.)

Dursban (chlorpyrifos) Dylox (trichlorfon)

Arena (clothianidin) Merit (imidacloprid)

Mach 2 (halofenozide)

Acelepryn (chlorantraniliprole) Conserve (spinosad) Provaunt (indoxacarb) Aloft (clothia.+bifen.) Allectus (imida.+bifen.)

Koppenhöfer et al. 2012

ABW +/- preventive white grub management

- If no preventive white grub (WG) management or if limited overlap in space → manage separately.
- If large areas receiving preventive white grub treatments also at risk from ABW → coordinate management to reduce treatments.

Managing non-resistant ABW

1. ABW management only & low ABW risk:

- Monitor for larvae (full to late bloom Rhodod.).
- If significant densities \rightarrow larvicide.

2. ABW management only & higher ABW risk:

- Monitor for adults (until forsythia $\frac{1}{2}$ gold : $\frac{1}{2}$ green).
- If significant densities \rightarrow Acelepryn / Ference / Tetrino (late bl. dogwood/eastern red bud).
- In areas with particularly high risk, monitor for larvae and apply another larvicide if necessary.

3. ABW & preventive WG management combined:

- Apply Acelepryn (at onset full bl. dogwood): 0.1 lb ai/ac for WG + 0.06-0.1 lb ai/ac for ABW areas

- Areas with very high ABW risk, monitor for larvae and, if necessary, apply another larvicide.

- Rotate every $\sim 3^{rd}$ year: neonicotinoid for WG \rightarrow ABW separately.

Multi target - Key pest: ABW

Acelepryn: ABW control @ 0.16 lb ai/ac
 →up to 0.26 lb ai/ac for early and late applications
 →also WG, SWW, BCW, BB control
 →CB only suppression

Multi target - Key pest: ABW

• Tetrino: ABW control @ 0.045-0.09 lb ai/ac

- \rightarrow 0.09 lb ai/ac for early and late applications
- \rightarrow also CB, BCW, SWW, BB control
- → WG suppression (too early)

ABW Biology and Control

- Biology, ecology, damage
- Monitoring
- Insecticide resistance
- Sustainable management: non-resistant
- Sustainable management: resistant ABW
- Biorationals

ABW Resistance and Insecticide Efficacy

Koppenhöfer et al. 2012

Managing <u>resistant</u> ABW

- Chlorpyrifos less effective than pyrethroids vs. adults!!!
- Depending on degree of resistance, only effective compounds: MatchPoint and Ference vs. larvae (≥ 80% control).
- <u>BUT</u>: MatchPoint and Ference overuse likely to lead to resistance, too!!!
- If you see something clearly not working: stop wasting time and money on it !!!
- NO MORE PYRETHROIDS !!!

Managing <u>resistant</u> ABW – Strategy

- 1st year spring: MatchPoint or Ference to all playing surfaces with ABW damage history.
- → Ference full bloom dogwood thru late bloom rhododendron.
- → MatchPoint full to late bloom rhodo.
- \rightarrow Water in: Ference / MatchPoint soon with 0.1".
- → During summer apply only if high larval densities or onset of damage (monitor!!!)
- → Rotate MoAs

Managing <u>resistant</u> ABW – Strategy

- In following years, start reducing applications.
- Base treatments on monitoring.
- Start reducing treatments on fairways
- Then work your way up to higher profile areas.
- Rotate MatchPoint and Ference w/ Provaunt (test if still effective).
- In areas with moderate larval densities (< 70/ft²) rotate with biorationals.

How late do larvicides work? Why apply later?

- Acelepryn, Ference efficacy: late bloom dogwood (L1.0) = start full bloom rhododendron (L2.5)
- Assessment of damage potential becomes easier and more precise.
- Late applications, if effective, cover a greater part of the population
- Sometimes infestations are missed until larvae large.

ABW larval stage average on insecticide efficacy – Field (2 years)

- L2.5: beginning full bloom Rhododedron
- L3.2: ~ 1 wk into full bl. Rhodo.
- L4.0: just past bloom; ~ 2 wk after beginning

ABW larval stage average on insecticide efficacy – Field (2 years)

- MatchPoint: L2.5, L3.2 ≥ L4.0
- Ference, Provaunt: L2.5, L3.2 > L4.0
- Dylox: L2.5 < L.3.2 > L4.0

Timing- Summary / Recommendations

- Ference, Acelepryn: L1.0 = L2.5.
- Ference, MatchPoint, Provaunt: L2.5 = L3.2
- Dylox: L3.2 > L2.5
- L4.0 generally lower but MatchPoint best
- → Concentrate on larvae
- Assess damage potential at start of or during full bloom rhododendron
- → If necessary, apply asap
- → Less applications, less resistance development

ABW Biology and Control

- Biology, ecology, damage
- Monitoring
- Insecticide resistance
- Sustainable management: non-resistant
- Sustainable management: resistant
- Biorationals

Entomopathogenic nematodes (EPN)

- obligate lethal parasites of insects
- mutualistic association with bacteria
- > 26 *Heterorhabditis* & 100 *Steinernema* spp.
- host searching capacity
- host range +/- broad
- ease of production
- recycling capacity

Entomopathogenic nematode life cycle

S. scarabaei

EPN Infections

Nematode products for US turf market

Nematode	Targets ¹	Product (Producer)	
Steinernema	BCW,	Milenium (BASF),	
carpocapsae	SWW, AW,	Capsanem (Koppert),	
	BB, Fleas	Ecomask (BioLogic)	
Heterorhabditis	WG, BB	Nemasys G (BASF),	
bacteriophora		Terranem NAm (Koppert),	
		Heteromask (BioLogic)	

¹BCW = black cutworm; SWW = sod webworm; AW = armyworm BB = billbugs; WG = white grubs; MC = mole crickets EPN vs. ABW larvae - Fairway trials vs. spring gen. L3-L5 2.5 b IJs/ha

 Sc most consistent suppression

McGraw et al. (2010)

- Split application improves EPN
- Additive Merit-EPN interaction
- Merit + split $Sc \rightarrow$ excellent control
- Merit simultaneously controls white grubs

EPN vs. ABW

- Steinernema carpocapsae or Heterorhabditis bacteriophora
- Apply when larvae start to appear in soil.
- If soil dry and/or hot, ~0.1" irrigation before application.
- ~0.25" post-treatment irrigation.
- Keep soil moderately moist at least 1 wk.
- Split application tend to improve efficacy.
- No effect of resistance.

Chromobacterium subtsugae

- GRANDEVO® CG ! 30% ai
- C. subtsugae strain PRAA4-1 and spent fermentation media
- 2-4 lbs/ac f. surface feeders
- 10-20 lbs/ac f. white grubs
- OMRI approved

 Activity vs. white grubs (varies with species), chinch bugs, billbugs, sod webworms.

Burkholderia spp.

- VENERATE[®] xc ! 94.46% ai
- Burkholderia spp. strain A396 cells and spent fermentation media
- For fruit and vegetables
- Turfgrass not on label yet
- OMRI approved

Activity vs. caterpillars and billbugs

Azadirachtin

- Molt-x[®] 3.0% ai
- Azadirachtin, botanical extract from neem tree
- 8-10 (max. 22.5) fl oz/ac
- OMRI approved
- Activity vs. numerous insects incl. weevils

Field Efficacy vs. ABW Adults susceptible (2x) resistant (60x)

Grandevo 2x 4-8 lbs/ac

Venerate 2x 8-16 pt/ac

Field Efficacy vs. ABW Larvae susceptible (2x) resistant (60x)

Grandevo 2x 4-8 lbs/ac

Venerate 2x 8-16 pt/ac

Molt-X 2x 1.4 pt/ac

Civitas Turf Defense a.i. Mineral oil (88.8%)

- Primarily fungicide, also insects on label
- Insects rec. 8.5 17 fl.oz. in 1.5 gal/1,000 ft²
- Greenhouse: best if soil saturated, 2-4 gal/1000 ft² spray volume, 0.05-0.1" post-spray irrigation.
- Field results highly variable: 13-55% control.
 Probably best if 17 floz at peak adults or 2x 8.5 floz ~7 days apart around peak adults.
- Not affected by resistance

Entomopathogenic Fungi

- facultative lethal parasites of insects
- Beauveria & Metarhizium species
- host range +/- broad; many different strains

before spore germination after *Metarhizium* sp. (white grub)

Beauveria sp. (chinch bug)

F52 conidia-based liquid formulation

- Met 52 EC
- 11% a.i, 89% petroleum distillates
- ~5.5×10⁹ CFU g⁻¹
- Rec. field rates: 6.4-9.6 kg ha⁻¹
- Field rates: 9.6-19.2 kg ha⁻¹
 → ~5-10×10¹³ CFU ha⁻¹

Spring 2019 - field test

Mscl (50 kg/ha), imi (336 g ai/ha), Con-l/Con-h (9.6/19.2 kg/ha)

- Microsclerotia: ineffective
- Imidacloprid: low efficacy
- Conidia: low efficacy
- Microsclerotia & Conidia + imi: additive mortality

ABW Biology and Control

- Intensive insecticide use is very likely to lead to ABW resistance.
- Getting on the pesticide treadmill with ABW is a 1-way road that over time gets ever uglier and harder to leave.
- The sooner you leave the better !
- Best not to get there in the first place !

Outlook: Turning ABW into an ally

- In mixed bentgrass-Poa annua fairways
- Monthly applications of low rate paclobutrazol (6-12 fl oz/acre) combined with ABW larvicides only when needed (threshold) dramatically reduce *Poa annua* with limited and short time negative effects on turf quality.

→ Ongoing research: at what Poa levels can ABW alone suppress Poa?

ABW+Paclo vs Poa - % Poa reduction in 1 year

Paclobutrazol	ABW	ABW	No
(fl oz/A)	Preventive	Threshold	ABWcides
0		28 (20-37)	44 (32-56)
4	47	70	70
	(33-61)	(57-83)	(56-79)
6	55	82	82
	(46-63)	(72-92)	(77-87)
12	88	78	88
	(84-93)	(68-87)	(87-90)

- High rate of Paclo most effective
- ½ rate Paclo with Threshold or No-Insecticides similar
- 1/3 rate Paclo w/ Threshold or No-Insecticides quite effective

My Rutgers Entomology Webpage:

http://entomology.rutgers.edu/personnel/ albrecht-koppenhofer/

- \rightarrow Extension presentations
- \rightarrow Extension publications

RUTGERS New Jersey Agricultural Experiment Station

Acknowledgments

Funding:

Rutgers Ctr f. Turfgrass Sci., GCSAA + chapters, NJTA, NYSTA, OJ Noer, Tri-State, USGA, USDA-NIFA

Environmental Institute for Gol

GCSAA

TURF RESEARCH FOUNDATION, INC

O.J. Noer Turfgrass Research Foundation