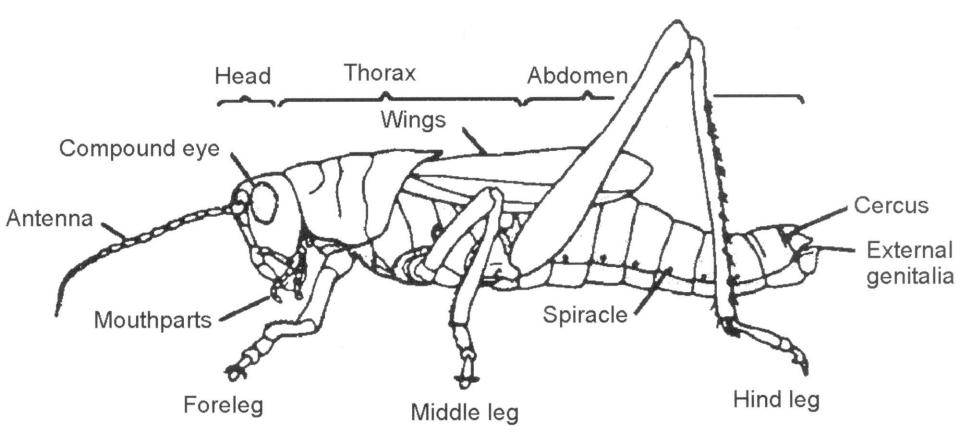
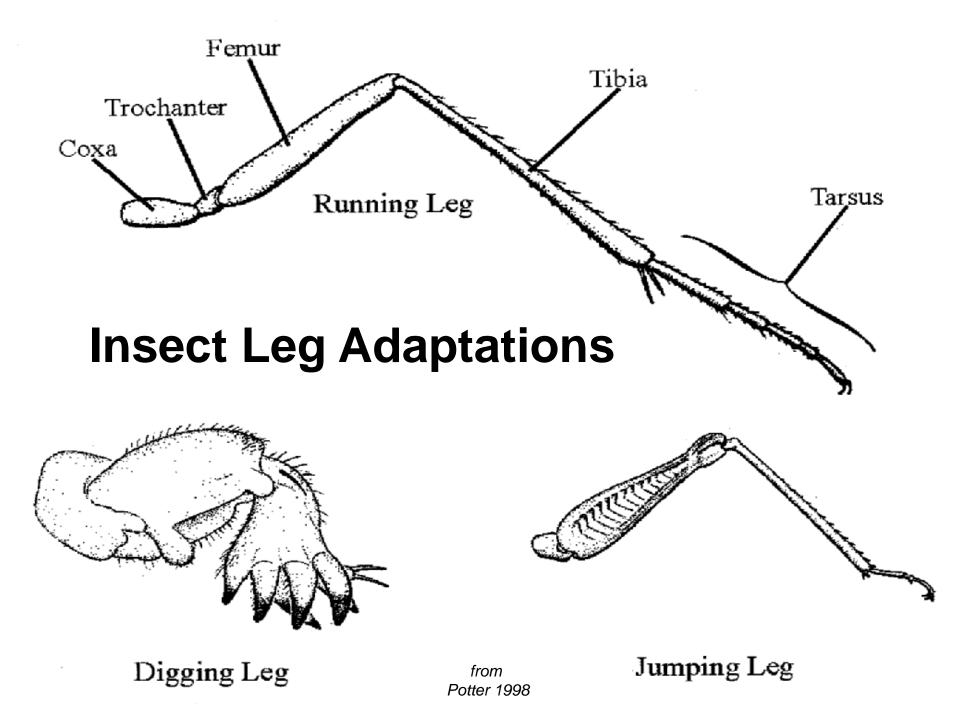
RUTGERS

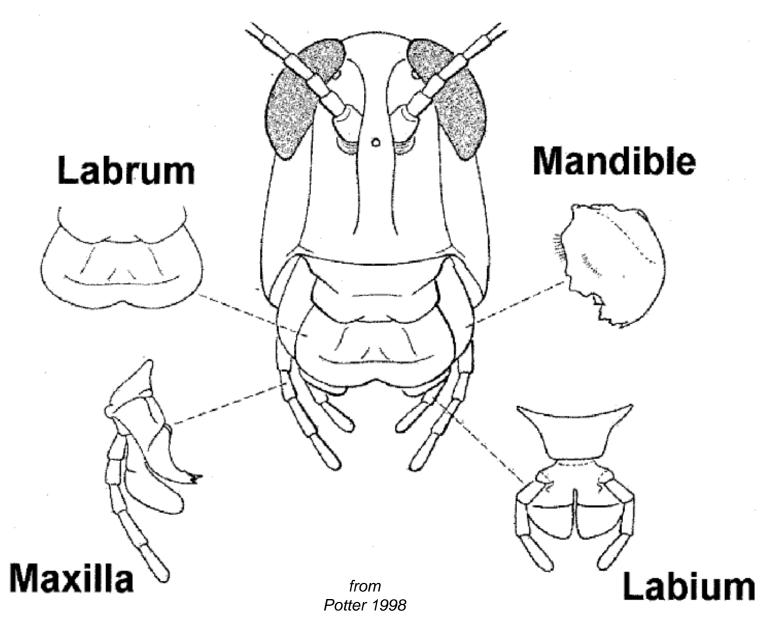
New Jersey Agricultural Experiment Station

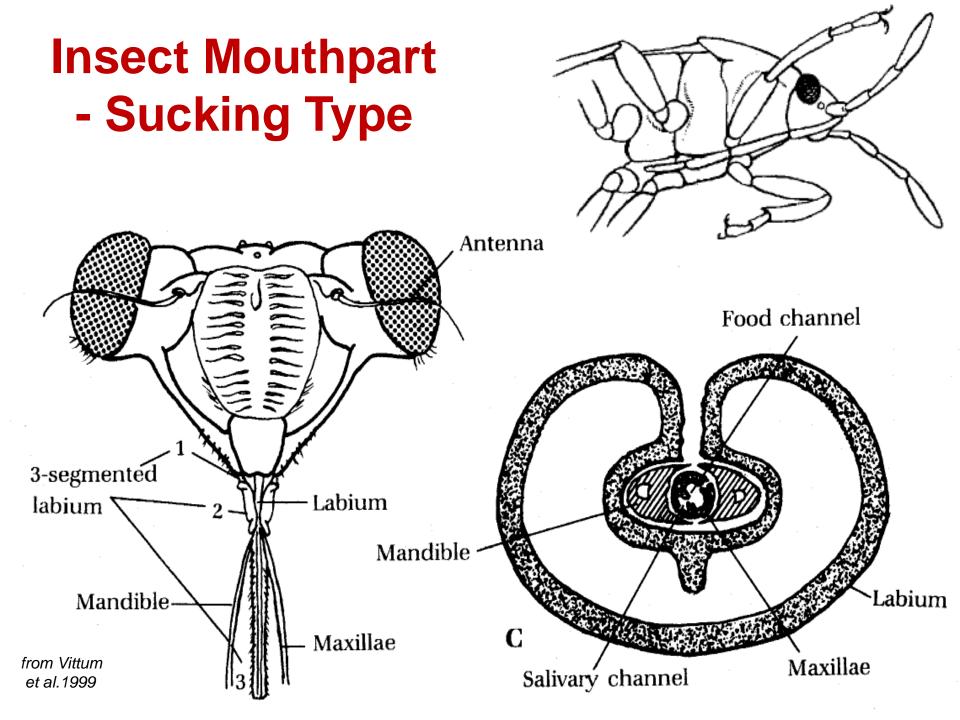
Managing Turfgrass Insects of the Northeast Part 1.: IPM and Management Options (updated 3/14/2022)


> Albrecht Koppenhöfer Rutgers Cooperative Extension



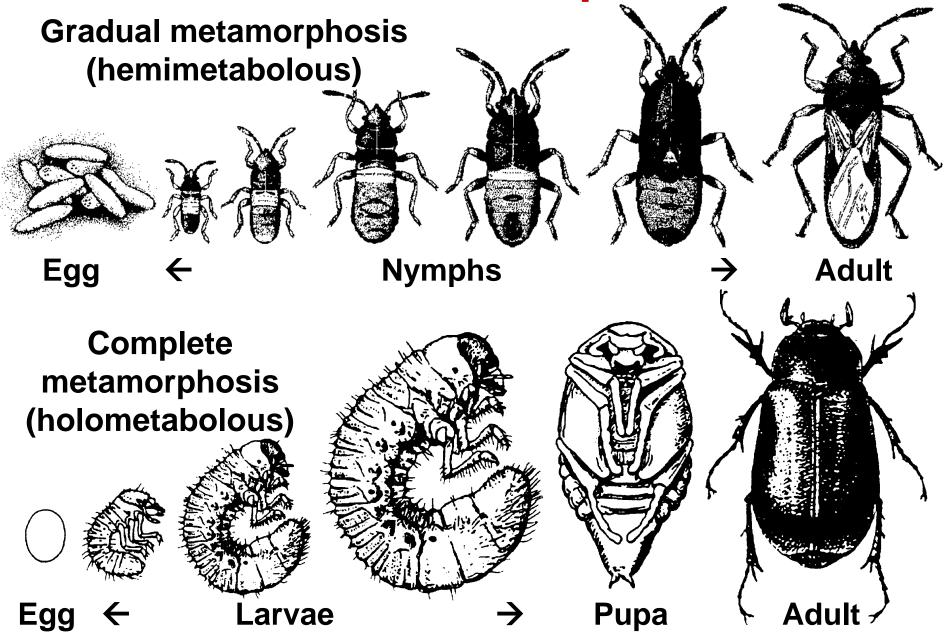

#### Outline


- INTRODUCTION TO INSECTS (3-7)
- TURF INSECT PEST MANAGEMENT (8-45)
  - Overview of IPM (9-18)
  - Detection and monitoring (19-36)
  - Management options (37-45)
- TURFGRASS INSECTICIDES (46-83)
- BENEFICIAL INSECTS & INSECT PATHOGENS (84-109)
- BIORATIONAL, ORGANIC, MINIMUM RISK INSECTICIDES (110-115)

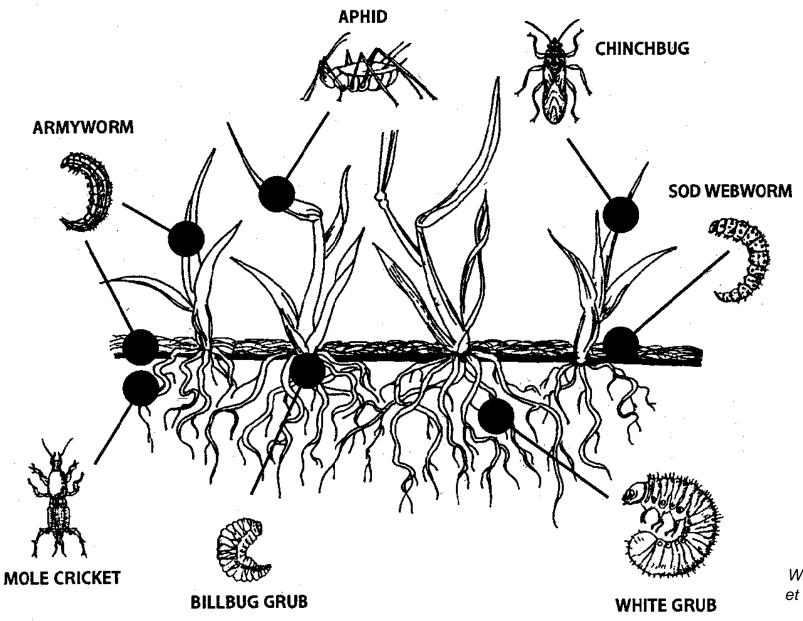

#### **Insect General Body Plan**






### **Insect Mouthpart – Chewing Type**





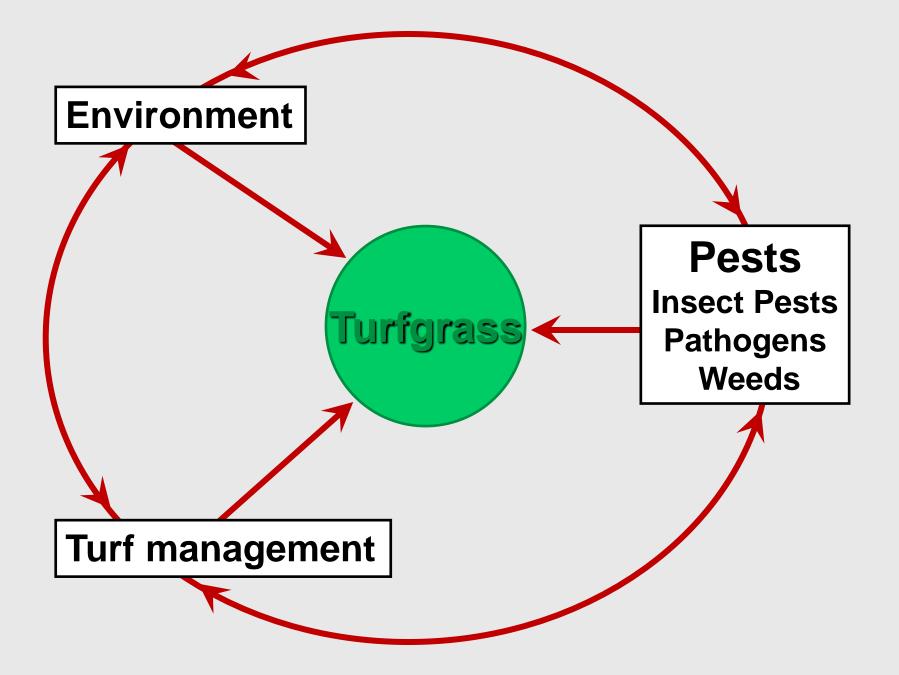

from USDA

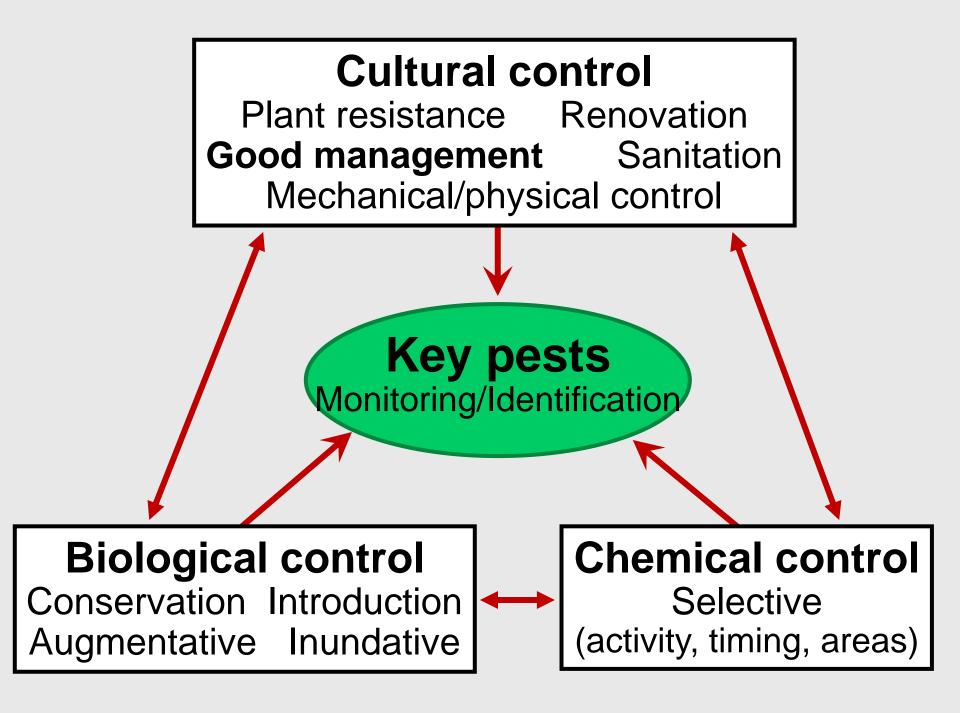
### **Insect Development**



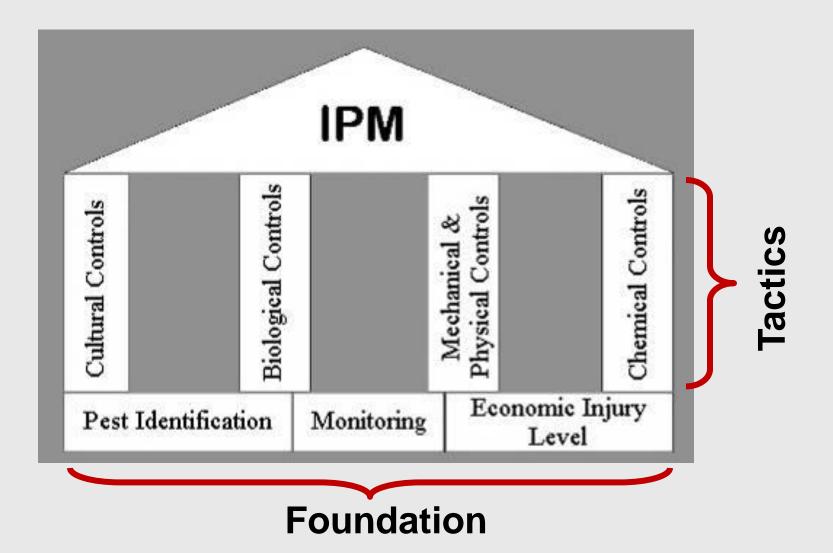
### **TURF INSECT PEST MANAGEMENT**




from Watschke et al. 1994


#### **INTEGRATED PEST MANAGEMENT**

IPM is the considered and coordinated use of pest control tactics in turf management.


The goal of IPM is to maintain healthy, functional turf in an economically viable and environmentally sound manner.

IPM is a decision making and management system.





### **Structure of an IPM Program**



## **Record Keeping**

- Records are the memory of the IPM program.
- Record should show "What, Where, When, and Who."

## **Identifying the Target Pest**

- Correct ID extremely important.
- You cannot manage a pest without knowing it.
- Gather information about pest(s) including life cycle, habits, natural enemies.

## **Setting Injury Levels**

- Develop tolerance levels involving representatives of interest groups.
- Determine injury levels.
- Determine action levels.
- Evaluate levels.

*Injury level* – pest density or amount of pest- related damage that can be tolerated without suffering an unacceptable medical, economic, or aesthetic loss.

Action level - pests density or amount of pest-related damage that triggers a treatment to prevent pest numbers from reaching the injury level.

## **Determine Injury Levels**

- Injury levels vary with pest and location.
- Adapt available injury levels to system.
- → Correlate injury and pest density through monitoring.
- $\rightarrow$  Evaluate levels periodically.

### **Evaluation**

- Consider the whole system
- Was pest adequately suppressed?
- ... suppressed in timely manner?
- Was planned procedure used?
- What damage was produced?
- Natural enemies affected?
- Any treatment side effects?
- Treatment cost effective?



# **DETECTION & MONITORING**

Monitoring is the regular and ongoing inspection of areas where pest problems do or might occur.

#### Before starting a monitoring program...

- Develop background on local pests.
- Map turf areas noting grass species, maintenance history, current practices, soil type.
- Divide site into pest management units (PMU).
- Prepare monitoring forms for each PMU.

## Why Monitor?

- Anticipate conditions that can trigger pest problems
- Determine if treatment needed
- Determine where, when, and what kind of treatments needed
- Evaluate and fine-tune treatments

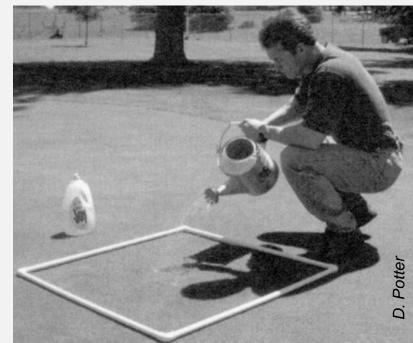

## What to Monitor

- Condition of plants
- Kind and abundance of pests and natural enemies
- Amount of plant damage
- Weather conditions
- Human behaviors affecting plants and pests
- Management activities

# **Visual Inspection**

- Scan for signs of infection.
- "hands-and-knees method").
- Use hand lens.
- Check boundary between healthy and damaged areas.
- Check for signs of insect activity.
- Observe adult pest activity.
- Observe vertebrate predator activity.







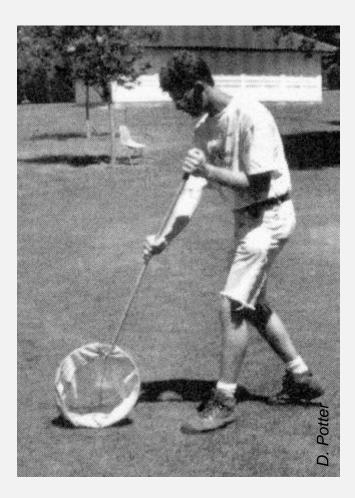

## **Disclosing (Irritant) Solution**

Sod web/cut/armyworms, billbug adults, mole crickets (best on short grass and warm, moist soil)

- 2 gal water + 1 oz liquid dish-washing detergent (preferably lemon-scented) or 2 drops of pyrethroid
- Apply over 1 yd<sup>2</sup> → insect emerge in 5-10 min (small sod webworms up to 20 min)
- Count / ID emerging pests
- Irrigate
- Sample every 14-21 days
- Evaluate treatments 3-4 days after application



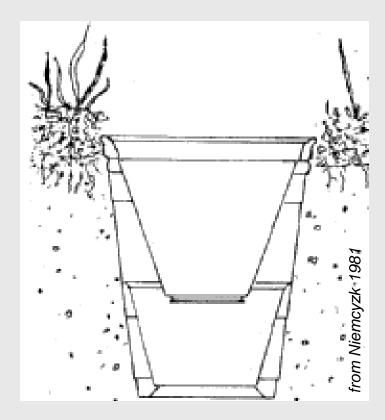
### Floatation Sampling Chinch bugs and their natural enemies


- Push cylinder 1" into turf
- Fill with water
- Insects float up in 5-10 min
- Count and ID
- Treatment threshold
   ~ 20-25 chinch bugs / ft<sup>2</sup>



# **Sweep Net Sampling**

Greenbugs, chinch bugs, flying insects


- Sturdy frame + bag
- Walk slowly sweeping net back and forth over turf.
- Examine contents every 10-20 sweeps (use consistent number of sweeps).



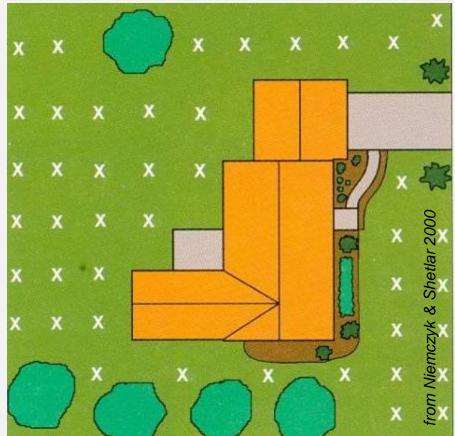
## **Pitfall Traps**

Billbug adults and other crawling insects

- Place out-of-the way
- Remove soil core
- 16 oz cup in hole
- 4 oz cup as receptacle
- Coffee cup liner as funnel
- Billbug threshold during spring migration: > 7-10 adults/trap/day



# **Soil Pest Sampling**

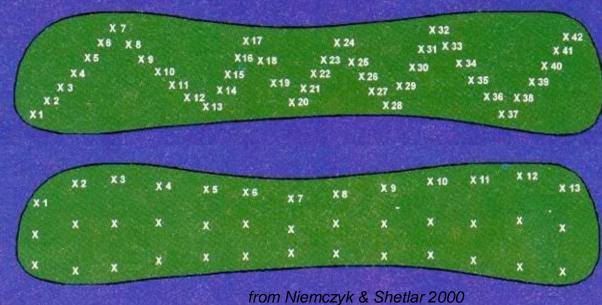

White grubs, billbug larvae, root-feeding insects

- Take soil core (~3" deep), brake up, count, ID insects.
- Split core in ½s, ¼s, etc., to expose grubs.
- Replace soil/sod cap
- Sample in grid pattern
- Irrigate if dry



#### White grub – mapping & surveying Home lawns / sport fields

- Best when grubs 2<sup>nd</sup> instars (~mid August)
- Prepare map of area
- Sample in grid pattern: 6-10' (home lawn), 10-20' (sports field)
- Record number and species (hand lens!) per sample (also 0's!).
- Standard cup cutter  $\rightarrow$  1 grub = 10/ft<sup>2</sup>.
- Several adjacent sample with 1+ grub → hot spot → consider treatment




#### White grub – mapping & surveying

- Best when grubs 2<sup>nd</sup> instars (~mid August)
- Prepare map of area.
- Sample in zigzag pattern 10-15' or transect pattern 10-20' apart.
- Record number and species per sample.
- Standard cup cutter  $\rightarrow$  1 grub = 10/ft<sup>2</sup>
- Several adjacent samples w\ ≥ 1 grub → hot spot
   → consider treating

affected area.

 1-2 man days per 9 holes



### **Pheromone Traps**

Japanese (!)/oriental beetle, black/variegated cutworm, armyworm, fall armyworm, bluegrass webworm, cranberry girdler

- Attract only males (except Japn. beetle)
- Species specific.
- Used to fine-tune
   treatment timing
- Clean/replace traps
   regularly



# **Indicator or Signal Plants**

- Predict insect activity, fine-tune treatment timing.
- Relate seasonal occurrence of pest stages to developmental stages of certain plants.
- Flowering trees / shrubs good indicators
- Set up 'phenology calendar' for your region.
- Available for: annual bluegrass weevil, black turfgrass ataenius, European chafer, hairy chinch bug

#### **Degree-Day Models**

- Predict insect activities and fine-tune treatment timing.
- Baseline developmental temperature for most insects 50°F.
- Calculate degree-day (DD) units for each day: <u>(min.temp. + max.temp.)</u> - baseline temp 2
- Add up average DD units for each day
   → DD accumulation

#### **Degree-Day Models**

- E.g.: low/high 45/65 → (45 + 65)/2 50 = 5
- No negative values. Insects do not develop backwards!
- DD accumulation available from companies or extension services, e.g. → <u>https://plant-pest-</u> <u>advisory.rutgers.edu/</u>
- For best regular updates:

   Use own weather station data to calculate GDDs.
   Use weather/GDD trackers,
  - ideally more than 1 per GC.



#### **Degree-Day Accumulation**

| Date | Max<br>Temp | Min<br>Temp | Total | Ave        | Minus<br>50 for<br>baseline | DD<br>Accumu-<br>lation |
|------|-------------|-------------|-------|------------|-----------------------------|-------------------------|
| 4/13 | 58          | 40          | 98    | <b>4</b> 9 | 0                           | 0                       |
| 4/14 | 66          | 42          | 108   | <b>54</b>  | 4                           | 4                       |
| 4/15 | 70          | 46          | 116   | <b>58</b>  | 8                           | 12                      |
| 4/16 | 75          | 49          | 124   | <b>62</b>  | 12                          | 24                      |
| 4/17 | 71          | 47          | 118   | 59         | 9                           | 33                      |

| Target Pest                     | Stage                          | Degree-Days* |  |  |  |  |
|---------------------------------|--------------------------------|--------------|--|--|--|--|
| north. masked chafer            | 1 <sup>st</sup> adults         | 898-905      |  |  |  |  |
|                                 | 90% adults                     | 1377-1579    |  |  |  |  |
| Bluegrass billbug               | 1 <sup>st</sup> adult activity | 280-352      |  |  |  |  |
| ""                              | 30% adult activi               | ity 560-624  |  |  |  |  |
| 66 66<br>                       | 70% egg hatch                  | 925-1035     |  |  |  |  |
| Hairy chinch bug                | 1 <sup>st</sup> egg laying     | 198-252      |  |  |  |  |
| "                               | 1 <sup>st</sup> egg hatch      | 522-702      |  |  |  |  |
| Bluegrass webworm               | 1 <sup>st</sup> gen. adults    | 864-900      |  |  |  |  |
| "                               | 2 <sup>nd</sup> gen. Adults    | 1900-2000    |  |  |  |  |
| Larger sod webworm              | 1 <sup>st</sup> gen. adults    | 846-882      |  |  |  |  |
| <u> </u>                        | 2 <sup>nd</sup> gen. adults    | 1980-2100    |  |  |  |  |
| Cranberry girdler               | peak adult fligh               | t 1080-1170  |  |  |  |  |
| *Baseline 50°F, starting Feb. 1 |                                |              |  |  |  |  |



**Turf Insect Pest Management** 

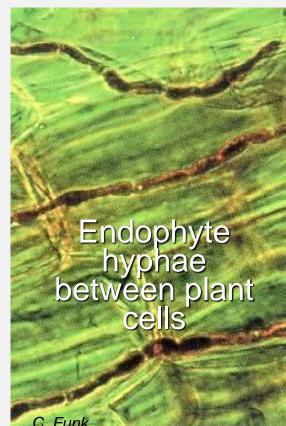
# **MANAGEMENT OPTIONS**

- Cultural control
- Physical control
- Biological control
- Chemical control

# **Criteria for Selection**

- Least hazardous to human health
- Least disruptive of natural control
- Least toxic to non-target organisms
- Most likely to be permanent
- Most cost-effective in the long term
- Easiest to carry out safely and effectively

#### **Good turf management**


- Sound management (irrigation, mowing, fertilization, etc.) increases turf vigor, pest tolerance, and recuperative potential.
- Light irrigation and/or fertilization can improve turf recovery after light insect damage

#### **Insect Tolerance**

- Use grasses adapted to local conditions
   → less stressed, more tolerant.
- Use blends of improved, adapted turfgrasses.
- Thin-leafed, aggressive creeping, heat tolerant Kentucky bluegrasses generally more billbug tolerant
- Deep-rooting, heat/drought tolerant warm season grasses and tall fescue more white grub tolerant
- Creeping bentgrasses more ABW tolerant

## **Insect Resistance - Endophytes**

- Endophytic fungi in many cvs. of tall fescue, fine fescue, perennial ryegrass
- In above-ground part of plants
- Produce alkaloids → feedingdeterrents or toxic to many insects.
- Little transfer into roots
- Endophytic grasses resistant to billbugs, chinch bugs, greenbugs, sod webworms, fall armyworm



# Thatch management

- Thatch prime habitat for many insect pest
- Barrier to penetration of control agents



- Best preventative control → healthy earthworm populations
- Soil pH 6-7, coring, slicing, vertical cutting, and light topdressing can reduce thatch.

# Biological control Conserve natural enemies !!!

- Many predators and parasites in healthy turf → buffer pest populations
- 80% of insecticide applications in turf unnecessary (NY study) !!!
- Use pesticides only when/where necessary.
- Use control agents with reduced impact on natural enemies.

# **Chemical Control**

- Only when and where necessary
- Spot rather than blanket treatments
- Use biorationals when possible.
- Use least toxic chemicals.
- Use chemicals that are compatible with other IPM components.

# **Control Approaches**

- Preventative vs. curative
- Multi Target Principle (but: key pest!!)

# Factors influencing decision to treat

- Perspectives of person making decision
- Financial considerations
- Turf quality standards
- Present and past pest spectrum



Turf Insect Pest Management

# **Turfgrass Insecticides: Activity, Use, and Safety**

### Sevin

- Al: carbaryl
- Class: carbamate (IRAC Grp. 1A)
- Moa: Acetylcholine esterase inhibitor
- Toxicology: sligthly toxic to mammals and birds; mod. toxic to fish; toxic to honeybees and aquatic invertebrates
- Toxic to arthropod natural enemies (predators/parasitoids)
- Use rate (lb ai/ac): 2-8; max. ? /y broadcast

### Sevin

- Activity spectrum: white grubs, caterpillars, chinch bugs, crane flies
- Armyworms/cutworm: 2-4 lb ai/ac curatively
- Sod webworms or chinch bugs: 6-8 lb ai/ac curatively
- White grubs: 8 lb ai/ac curatively (Aug/Sept)
- Crane flies: 8 lb ai/ac preventively vs. small larvae (Sept/Oct)

# Dylox

- AI: trichlorfon
- Class: organophosphate (IRAC Grp. 1B)
- Moa: Acetylcholine esterase inhibitor
- Toxicology: mod. toxic to mammals; pract. non-toxic to birds and fish; slightly toxic to honeybees; toxic to aquatic invertebrates
- Toxic to arthropod natural enemies (predators/parasitoids)
- Use rate (lb ai/ac): 5.4-8.1; max. 24.5/y broadcast

## Dylox

- Activity spectrum: white grubs, caterpillars, ABW, mole crickets
- Caterpillars : 5.4 lb ai/ac curatively (max. 16.2/ y)
- White grubs: 8.1 lb ai/ac curatively [Aug/Sept (Oct)]
- ABW: 8.1 lb ai/ac curatively vs. larvae (mid-May to early June; summer as necessary)
- Crane flies: 8.1 lb ai/ac preventively vs. small larvae (~Oct)

# Talstar

- AI: bifenthrin
- Class: pyrethroid (IRAC Grp. 3A)
- Moa: Na+ channel modulator
- Toxicology: mod. toxic to mammals; pract. non-toxic to birds; extr. toxic to fish and aquatic invertebrates; toxic to honeybees
- Toxic to arthropod natural enemies (predators/parasitoids)
- Use rate (lb ai/ac): 0.1-0.4; max. 0.4/y broadcast

### **Talstar**

- Activity spectrum: everything on surface and in thatch
- Caterpillars: 0.1 lb ai/ac curatively
- Adults of ABW, billbugs, BTA: 0.1-0.2 lb ai/acre curatively
- Chinch bugs: 0.2-0.4 lb ai/ac curatively
- Crane flies : 0.2-0.4 lb ai/ac preventively vs. small larvae (~Oct)

### Merit

- AI: imidacloprid
- Class: neonicotinoid (IRAC Grp. 4A)
- Moa: nicotinic ACh receptor agonist
- Toxicology: mod. toxic to mammals; pract. non-toxic to birds and fish; highly toxic to honeybees and aquatic invertebrates
- Use rate (lb ai/ac): 0.3-0.4; max. 0.4/y broadcast
- Activity spectrum: white grubs, billbugs

### Merit

- White grubs: 0.3 lb ai/ac in June-July → also chinch bug and sod webworm suppression. Higher rate for early preventive (May) or early curative (mid-Aug) white grub applications
- Billbugs: 0.3 lb ai/ac late April to mid-May → also white grub control

#### Arena \*

- AI: clothianidin
- Class: neonicotinoid (IRAC Grp. 4A)
- Moa: nicotinic ACh receptor agonist
- Toxicology: pract. non-toxic to mammals, birds, fish; mod. toxic to honeybees; toxic to aquatic invertebrates
- Use rate (lb ai/ac): 0.2-0.33; max. 0.4/y broadcast
- Activity spectrum: white grubs, billbugs, chinch bugs, sod webworms, crane flies

\*Not registered in NY

#### Arena

- White grubs: 0.2 lb ai/ac in June-July → also chinch bug and sod webworm control. Higher rates for early preventive (May) or early curative (>mid-Aug) white grub applications
- Billbugs: 0.2 lb ai/ac late April to mid-June → also white grub control
- Sod webworms or chinch bugs: 0.2 lb ai/ac curatively → only ~20 d residual → also white grub control

### Meridian \*

- AI: thiamethoxam
- Class: neonicotinoid (IRAC Grp. 4A)
- Moa: nicotinic ACh receptor agonist
- Toxicology: slightly toxic to mammals, birds; pract. non-toxic to fish; highly toxic to honeybees and aquatic invertebrates
- Use rate (lb ai/ac): 0.2-0.27; max. 0.27/y broadcast
- Activity spectrum: white grubs, billbugs
   Not registered in NY

## Meridian

- White grubs: 0.2 lb ai/ac in June-July → also chinch bug and sod webworm suppression. Higher rate for early preventive (May) or early curative (mid-Aug) white grub applications
- Billbugs: 0.2-0.27 lb ai/ac late April to mid-May → also white grub control

# Zylam

- AI: dinotefuran
- Class: neonicotinoid (IRAC Grp. 4A)
- Moa: nicotinic ACh receptor agonist
- Toxicology: slightly toxic to mammals, birds, fish; toxic to honeybees and aquatic invertebrates
- Use rate (lb ai/ac): 0.54; max. 0.54/y broadcast
- Activity spectrum: white grubs, billbugs, ABW, chinch bugs, cutworms, sod webworms, crane flies, mole crickets

### **Zylam**

- White grubs: 0.54 lb ai/ac in June-July
- Billbugs: 0.54 lb ai/ac late April to mid-May
- ABW: 0.54 lb ai/ac late April to mid-May

# **Matchpoint**

- AI: Spinosad
- Class: spinosyn (IRAC Grp. 5)
- Moa: Nicotinic Acetylcholine receptor agonist (allosteric)
- Toxicology: pract. non-toxic to mammals and birds; slightly toxic to fish; toxic to honeybees and aquatic invertebrates
- Use rate (lb ai/ac): 0.075-0.4; max. ? /y broadcast

### **MatchPoint**

- Activity spectrum: caterpillars, ABW, BTA
- Short residual  $\rightarrow$  apply curatively
- Sod webworms, small armyworms/: 0.075 lb ai/ac
- Small cutworms: 0.275 lb ai/ac
- Larger army/cutworms, ABW, BTA: 0.4 lb ai/ac

#### **Provaunt**

- AI: indoxacarb
- Class: oxadiazine (IRAC Grp. 22)
- Moa: voltage-dependant Na<sup>+</sup> channel blocker
- Toxicology: sligthly toxic to mammals and fish; pract. non-toxic to birds; toxic to honeybees and aquatic invertebrates
- No direct impact on arthropod natural enemies (predators/parasitoids)

#### Provaunt

- Use rate (lb ai/ac): 0.04-0.23; max. 0.45/y broadcast
- Activity spectrum: caterpillars, crane flies, ABW
- Caterpillars: 0.04-0.08 lb ai/ac curatively
- Crane flies: 0.11-0.23 lb ai/ac preventively (Sept/Oct) or curatively (May)
- ABW: 0.23 lb ai/ac curatively vs. larvae

# Acelepryn

- AI: chlorantraniliprole
- Class: anthranilic diamide (IRAC Grp. 28)
- Moa: ryanodine receptor modulator
- Toxicology: pract. non-toxic to mammals, birds, fish; mod. toxic to honeybees; toxic to aquatic invertebrates
- No direct impact on arthropod natural enemies (predators/parasitoids)
- Use rate (lb ai/ac): 0.026-0.26; max. 0.5 per year broadcast

# Acelepryn

- Activity spectrum: white grubs, billbugs, caterpillars, ABW, crane flies
- Caterpillars, use curatively: 0.03-0.05 lb ai/ac → 4-8 wk residual; 0.1 lb ai/ac → 8-12 wk; 0.2 lb ai/ac 12-16 wk residual
- White grubs: 0.1 lb ai/ac in May-July, 0.2 lb ai/ac for early curative (to mid-Aug)
- Billbugs: 0.1-0.26 lb ai/ac in late April/early May
- ABW: 0.16-0.26 lb ai/ac in late April to mid-May
- Craneflies: 0.1-0.2 lb ai/ac in late summer/early fall

### **Tetrino**

- Al: tetraniliprole
- Class: anthranilic diamide (IRAC Grp. 28)
- Moa: ryanodine receptor modulator
- Toxicology: pract. non-toxic to mammals, birds(?), fish; highly toxic to honeybees; toxic to aquatic invertebrates
- No direct impact on arthropod natural enemies (predators/parasitoids)
- Use rate (lb ai/ac): 0.045-0.9; max. 0.178 per year broadcast

## **Tetrino**

- Activity spectrum: white grubs, billbugs, ABW, caterpillars, chinch bugs
- Caterpillars, curatively: 0.045-0.9 lb ai/ac
- White grubs: preventively 0.045-0.09 lb ai/ac in June-July, 0.09 lb ai/ac for early curative (mid-Aug)
- Billbugs/ABW: 0.45-0.09 lb ai/ac preventively (early to mid-May)
- Chinch bugs: 0.045-0.09 lb ai/ac preventively (mid-May to mid-June)

#### **Ference**

- Al: cyantraniliprole
- Class: anthranilic diamide (IRAC Grp. 28)
- Moa: ryanodine receptor modulator
- Toxicology: pract. non-toxic to mammals, birds(?), fish(?); highly toxic to honeybees; toxic to aquatic invertebrates
- No direct impact on arthropod natural enemies (predators/parasitoids)
- Use rate (lb ai/ac): 0.026-0.26; max. 0.4 per year broadcast

#### Ference

- Activity spectrum: white grubs, billbugs, caterpillars, ABW, crane flies
- Caterpillars, curatively: 0.03-0.2 lb ai/ac
- White grubs: 0.1 lb ai/ac in mid-June-July, 0.1 0.2 lb ai/ac for early curative (mid-Aug)
- Billbugs: 0.1-0.2 lb ai/ac in early May
- ABW: 0.16-0.26 lb ai/ac in early to late-May
- Craneflies: 0.1-0.2 lb ai/ac September/October

Note: much shorter soil half life than Acelepryn: precisely time vs. most susceptible stages.

## Suprado

- Al: novaluron
- Class: benzoylureas (IRAC Grp. 15)
- Moa: chitin synthesis inhibitor
- Toxicology: pract. non-toxic to mammals, birds, fish; low toxic. to honeybees; toxic to aquatic invertebrates
- No direct impact on arthropod natural enemies (predators/parasitoids)
- Use rate (lb ai/ac): 0.67-0.89; max. 2.03 per year broadcast

# Suprado

- ABW: 0.67-0.89 lb ai/ac vs. adults, small and mid-size larvae (late April-late May; as necessary in summer).
- Billbugs: 0.67-0.89 lb ai/ac vs. mid-size larvae (mid-June to early July)\*
- Caterpillars: 0.22-0.45 lb ai/ac curatively\*
- White grubs: 0.67-0.89 lb ai/ac late June to late July\*
- Chinch bugs: 0.67-0.89 lb ai/ac preventively (mid-May to mid-June)\*
  - \*per label! Data?

# **Triple Crown**

- AI: imidacloprid + bifenthrin + zeta-cypermethrin (5:3:1 ratio)
- Class: neonic. + pyrethr. (IRAC Grp. 4A + 3)
- Moa: nicotinic ACh receptor agonist + Na<sup>+</sup> channel modulator
- Toxicology: mod. toxic to mammals, pract. non-toxic to birds; extrem. toxic to fish and aquatic invertebrates; highly toxic to honeybees
- Use rate (lb ai/ac): 0.176-0.616 (10-35 fl oz); max. 0.88/y (50 fl oz) broadcast

# **Triple Crown**

- Activity spectrum: you name it
- White grubs: 20-35 fl oz/ac in June/July → also chinch bug and sod webworm control
- Billbugs: 20-35 fl oz/ac vs adults in late April to mid-May → also white grub suppression
- ABW: 20-35 fl oz/ac when adults active
- Caterpillars: 10-15 fl oz ai/ac curatively
- Chinch bugs, ants, crane flies, ticks: 20-35 fl oz/ac as needed
- Max. 4 wk residual for surface insects!!!

#### Allectus

- AI: imidacloprid + bifenthrin (5:4 ratio)
- Class: neonic. + pyrethr. (IRAC Grp. 4A + 3A)
- Moa: nicotinic ACh receptor agonist + Na<sup>+</sup> channel modulator
- Toxicology: mod. toxic to mammals, pract. non-toxic to birds; extrem. toxic to fish and aquatic invertebrates; highly toxic to honeybees
- Use rate (lb ai/ac): 0.34-0.43; max. 0.9/y broadcast

#### **Allectus**

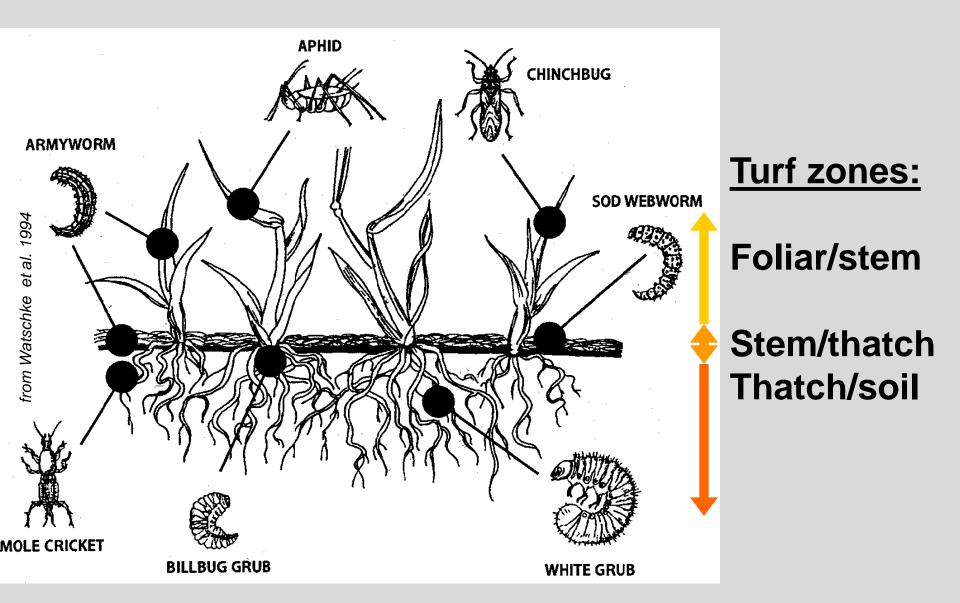
- Activity spectrum: you name it
- White grubs: 0.34 lb ai/ac in mid-June/July
   → also chinch bug and sod webworm control
- Billbugs: 0.34 lb ai/ac in late April to mid-May → also white grub control
- Sod webworms or chinch bugs: 0.34 lb ai/ac curatively → also white grub control
- ABW: 0.35 lb ai/ac when adults active
- Max. 4 wk residual for surface insects!!!

#### Aloft \*

- AI: clothianidin + bifenthrin (2:1 ratio)
- Class: neonic. + pyrethr. (IRAC Grp. 4A + 3A)
- Moa: nicotinic ACh receptor agonist + Na<sup>+</sup> channel modulator
- Toxicology: mod. toxic to mammals; pract. non-toxic to birds; extrem. toxic to fish and aquatic invertebrates; highly toxic to honeybees
- Use rate (lb ai/ac): 0.3-0.6; max. 0.6/y broadcast

\*Not registered in NY

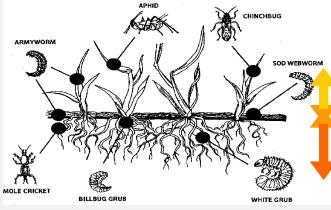
#### Aloft


- Activity spectrum: you name it.
- White grubs: 0.3 lb ai/ac in May to August
- Billbugs: 0.3 lb ai/ac in late April to mid-June
   → also white grub control
- Sod webworms or chinch bugs: 0.3 lb ai/ac curatively → also white grub control
- ABW: 0.371 lb ai/ac when adults active
- Max. 4 wk residual for surface insects!!!

#### **EcoTox Profiles - Turfgrass Insecticides (Technical Grade)**

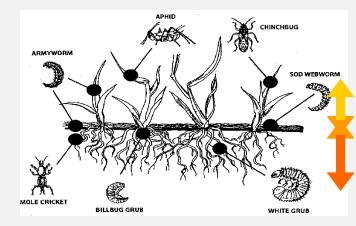
| Class           | Trade<br>name | Use rate<br>(lb ai/a.) | Mammal.<br>LD50<br>(mg/kg) | Avian,<br>LD50<br>(mg/kg) | Fish,<br>LC50<br>(ppm) | Bee,<br>LC50<br>(µg/bee) | Water<br>solub.<br>(mg/L) |
|-----------------|---------------|------------------------|----------------------------|---------------------------|------------------------|--------------------------|---------------------------|
| Carbamate       | Sevin         | 2.0 - 8.0              | 550                        | >2,179                    | 2                      |                          | 40                        |
| OP              | Orthene       | 1.0 - 3.0              | 906                        | 350                       | >1,000                 | 1.2                      | 790,000                   |
|                 | Dursban       | 1.0                    | 97                         | 170                       | 8                      | 0.6                      | 0.4-4.8                   |
|                 | Dylox         | 5.5 - 8.2              | 400                        | >5,000                    | 430                    | 59.8                     | 136,000                   |
| Pyrethroid      | Talstar       | 0.04 - 0.11            | 63                         | 2,150                     | <0.01                  | <0.1                     | 0.1                       |
|                 | Тетро         | 0.05 - 0.1             | 1,070                      | >5,000                    | <0.01                  |                          | 2                         |
|                 | DeltaGard     | 0.03 - 0.13            | 96                         | >4,640                    | <0.01                  |                          | 2                         |
|                 | Scimitar      | 0.03 - 0.12            | 100                        | >3,950                    | <0.01                  | <0.1                     | 0.005                     |
| Neo-            | Arena         | 0.2 - 0.33             | >5,200                     | >2,000                    | 105                    | 4                        | 327                       |
| nico-<br>tinoid | Merit         | 0.3 - 0.4              | 424                        | >4,797                    | >8,300                 | 0.4                      | 514                       |
|                 | Meridian      | 0.2 - 0.27             | 1,563                      | 576                       | >100                   | <0.1                     | 4,000                     |
| Spinosyn        | Conserve      | 0.08 - 0.4             | >5,000                     | >2,000                    | 30                     | <0.1                     | 235                       |
| Diacylhydraz.   | Mach2         | 1.0 - 2.0              | >5,000                     | >5,000                    | 9                      | >100                     | 12.3                      |
| Oxadiazine      | Provaunt      | 0.04 - 0.24            | 1,000                      | >5,620                    | 650                    | 1.3                      | 0.2                       |
| Anthr.diamide   | Acelepryn     | 0.03 - 0.26            | >5,000                     | 2,200                     | >15,000                | > 4                      | 1                         |

| Class | Trade<br>name | Use rate<br>(Ib ai/a.) | Mammal<br>LD50<br>(mg/kg) | Avian<br>LD50<br>(mg/kg) | Fish<br>LC50<br>(ppm) | Bee<br>LC50<br>(µg/bee) |
|-------|---------------|------------------------|---------------------------|--------------------------|-----------------------|-------------------------|
| Carb  | Sevin         | 2.0-8.0                | 550                       | >2,179                   | 2                     |                         |
| OP    | Dylox         | 5.5–8.2                | 400                       | >5,000                   | 430                   | 60                      |
| Pyr   | Talstar       | 0.04–0.11              | 63                        | 2,150                    | <0.01                 | <0.1                    |
| Neo-  | Merit         | 0.3–0.4                | 424                       | >4,797                   | >8,300                | 0.4                     |
| nic   | Meridian      | 0.2–0.27               | 1,563                     | 576                      | >100                  | <0.1                    |
|       | Arena         | 0.2–0.33               | >5,200                    | >2,000                   | 105                   | 4                       |
| Spin  | Conserve      | 0.08–0.4               | >5000                     | >2,000                   | 30                    | <0.1                    |
| Diac  | Mach2         | 1.0–2.0                | >5,000                    | >5,000                   | 9                     | >100                    |
| Oxa   | Provaunt      | 0.04–0.24              | 1,000                     | >5,620                   | 650                   | 1.3                     |
| Anth  | Acelepryn     | 0.03–0.26              | >5,000                    | 2,200                    | >15 k                 | > 4                     |


#### **Target principle – turf zones**

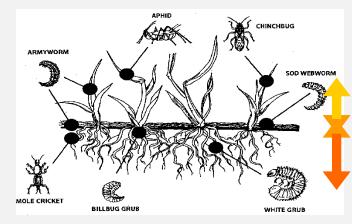


## **Target principle**


- Control agent has to be delivered to the target zone in which the pest feeds or hides.
- The target zone determines:
   a. insecticide formulation
  - b. timing of application
  - c. application technique
  - d. watering in of treatment

Target principle – soil/thatch zone




- Pre-irrigate dry soil 1 d before treatment (espec. when thatchy)
- $\rightarrow$  draws insects closer to surface
- $\rightarrow$  improves infiltration
- Granular and liquid formulations
- Liquid: coarse spray (2 gal/1,000 ft<sup>2</sup>)
- Water in (or timely rainfall) (~0.25")

# Target principle – thatch/stem zone



- Granular and liquid formulations
- Liquid: coarse spray (2 gal/1,000 ft<sup>2</sup>)
- Light post-treatment irrigation (~0.1")
- Systemics for pests inside stems
- Delay irrigation and mowing for 1-2 d

# Target principle – stem/foliar zone



- Liquid: coarse spray (2 gal/1,000 ft<sup>2</sup>)
- Coincide treatments with feeding activity of pest
- Delay irrigation and mowing for 1-2 d
- Granular formulation only if compound systemic (→ post-application irrigation)

#### **Reasons for control failures**

- Insecticide selection
- Incorrect pest ID
- Wrong formulation
- Poor calibration
- Deactivation in spray tank
- Bad timing

## **Reasons for control failures (cont'd)**

- Volatilization (windy! warm!)
- Insufficient irrigation
- Temperature
- Failure to penetrate thatch (chlorpyrifos !!)
- Deactivation in soil (chemical, microbial)
- Pest resistance

#### **Multi Target Principle**

- Correct AI at right time and rate can control more than 1 (potential) pest
- But prioritize key pest !!!
- Use to reduce labor AND 'toxicity load' for environment AND negative impacts on beneficials.

\*See specific examples for each insect group presented

#### Key pests: Timing of critical stages and damage\*

| Pes   | st | Ap | or |  | May |  | Ju | lune |  |  | July |  |  | Aug |  |  | Sept |  |  | t | Oct |  |  |  |  |  |
|-------|----|----|----|--|-----|--|----|------|--|--|------|--|--|-----|--|--|------|--|--|---|-----|--|--|--|--|--|
|       | Lv |    |    |  |     |  |    |      |  |  |      |  |  |     |  |  |      |  |  |   |     |  |  |  |  |  |
|       | Ad |    |    |  |     |  |    |      |  |  |      |  |  |     |  |  |      |  |  |   |     |  |  |  |  |  |
| -     | Da |    |    |  |     |  |    |      |  |  |      |  |  |     |  |  |      |  |  |   |     |  |  |  |  |  |
| WG -  | Lv |    |    |  |     |  |    |      |  |  |      |  |  |     |  |  |      |  |  |   |     |  |  |  |  |  |
| VVG   | Da |    |    |  |     |  |    |      |  |  |      |  |  |     |  |  |      |  |  |   |     |  |  |  |  |  |
|       | Ny |    |    |  |     |  |    |      |  |  |      |  |  |     |  |  |      |  |  |   |     |  |  |  |  |  |
| СВ    | Ad |    |    |  |     |  |    |      |  |  |      |  |  |     |  |  |      |  |  |   |     |  |  |  |  |  |
|       | Da |    |    |  |     |  |    |      |  |  |      |  |  |     |  |  |      |  |  |   |     |  |  |  |  |  |
| BCW - | Lv |    |    |  |     |  |    |      |  |  |      |  |  |     |  |  |      |  |  |   |     |  |  |  |  |  |
|       | Da |    |    |  |     |  |    |      |  |  |      |  |  |     |  |  |      |  |  |   |     |  |  |  |  |  |
| SWW   | Lv |    |    |  |     |  |    |      |  |  |      |  |  |     |  |  |      |  |  |   |     |  |  |  |  |  |
|       | Da |    |    |  |     |  |    |      |  |  |      |  |  |     |  |  |      |  |  |   |     |  |  |  |  |  |
|       | Lv |    |    |  |     |  |    |      |  |  |      |  |  |     |  |  |      |  |  |   |     |  |  |  |  |  |
| BB    | Ad |    |    |  |     |  |    |      |  |  |      |  |  |     |  |  |      |  |  |   |     |  |  |  |  |  |
|       | Da |    |    |  |     |  |    |      |  |  |      |  |  |     |  |  |      |  |  |   |     |  |  |  |  |  |

\*Average timing for NJ

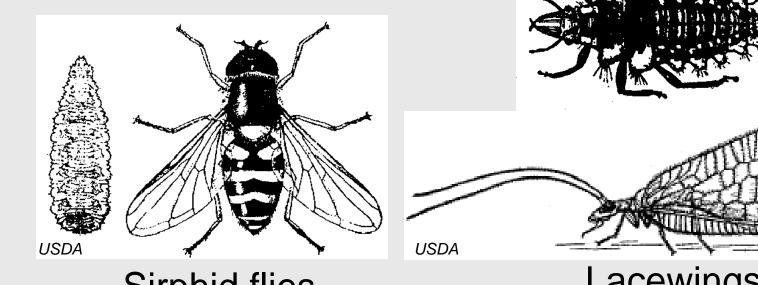
**ABW** = annual bluegrass weevil; **WG** = white grubs;

CB = chinch bug; BCW = black cutworm; BB = billbugs; SWW = sod webworms;

Ad = adults; Lv = larvae; Ny = nymphs; Da = turf damage

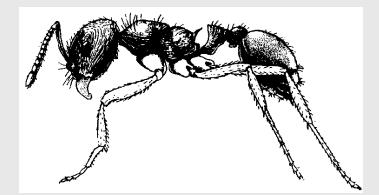


Turf Insect ID & Biology


# Beneficial insects & insect pathogens

- Predators
- Parasites
- Pathogens



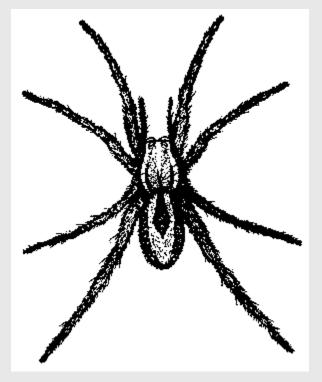

#### Beneficial turfgrass insects - Predators

#### Big-eyed bugs (Chinch bugs & small insects, eggs)



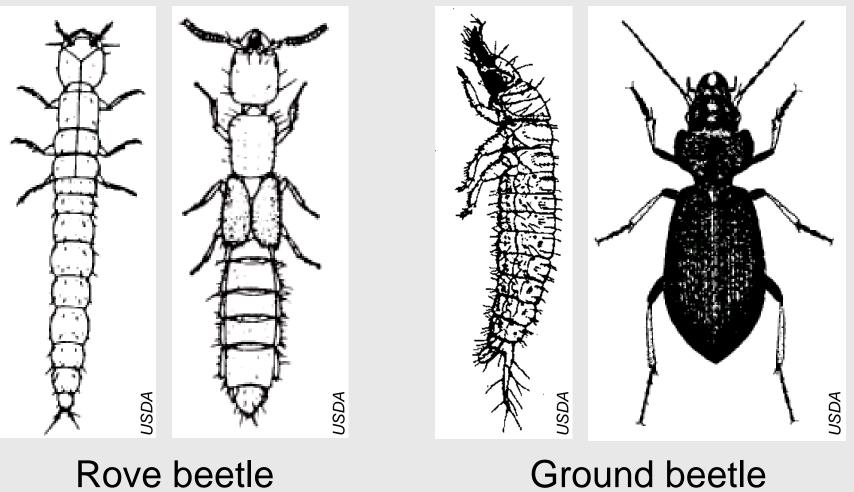
Sirphid flies (aphids, mealybugs) Lacewings (aphids, mealybugs)

JSDA



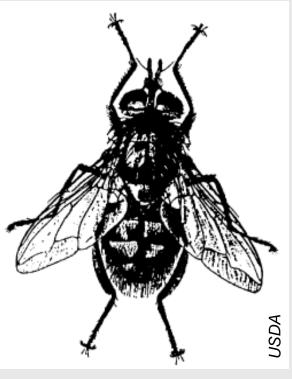

**Ants** (generalists)

#### Beneficial turfgrass insects - Predators


# <image>

Lady beetles (aphids, mealybugs)




Ground spiders (generalists)

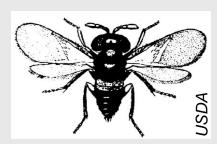
#### Beneficial turfgrass insects - Predators



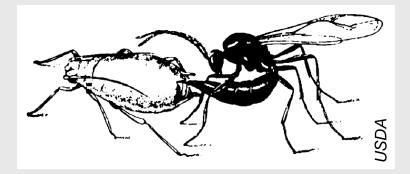
(generalists)

(generalists)




**Tachinid flies** 

(larvae, adults of various pests)




Tachinid larva on white grub

#### Beneficial turfgrass insects - Parasites



**Chalcid wasps** (eggs, larvae, pupae of various pests)



Aphelinid wasps (aphids)

## Beneficial turfgrass insects - Parasites



Scoliid wasps (white grub spp.) **Tiphiid wasps** (white grub spp.)

Young *Tiphia* Iarva

Mature *Tiphia* Iarva

*Tiphia* cocoon



## Naturally Occurring Pathogens of Turfgrass Insect Pests

- Entomopathogenic nematodes (Steinernema spp., Heterorhabditis spp.)
- Entomopathogenic fungi (*Beauveria* spp., *Metarhizium anisopliae*)
- Bacteria

(Paenibacillus popilliae, Serratia spp.)

• Rickettsia, Microsporidia, Protozoa

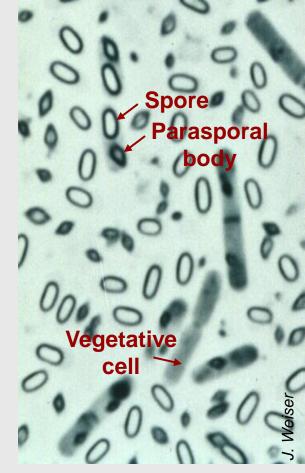
#### Milky disease, Paenibacillus popilliae



- bacterial pathogen
- grubs ingest spores with soil during feeding
- colonizes grub's body fluid
- grub starves; death in ~4 wk
- forms spores  $\rightarrow$  white color
- spores released from dead grub survive for years in soil



# Milky Disease


- Most grub species have their own strain
- Commercials strain effective (?) only vs. Japanese beetle
- Inoculative applications in a 3'x 3' grid pattern



- Recycling in hosts → 1-3 year to spread throughout treated area
- Best establishment at high Japn. btl. densities and where soil temperatures stay > 70°F for longer periods

# **Bt - Bacillus thuringiensis**

- Endospore-forming facultative insect pathogen
- Common in soil and sediment
- Produces parasporal body: contains insecticidal crystal protein (delta endotoxin)



- When ingested, endotoxin disrupts midgut epithelium → gut paralysis → septicemia, starvation → death.
- Strains specific to different insect groups

#### **Bt - Bacillus thuringiensis**

- rapidly inactivated by UV light → foliar applications use UV protectants, apply late in day.
- Most strains more effective vs. young pest stages
- Bt kurstaki (DiPel, Javelin), Bt aizawai (XenTari) active vs. armyworms and sod webworms (not black cutworm)
- Bt israelensis vs. crane flies
- *Bt galleriae*, *Bt japonensis* (shelved) vs. white grubs



## **Bt galleriae SDS-502**

- grubGONE!® 9% ai granular formulation
- Applied at 100-150 lbs/ac (9 13.5 lbs ai/ac)
- > 2 years shelf life
- OMRI approved



- Apply vs. young grubs (L1, L2)
- Most effective vs. Japanese beetle
- More variable with masked chafers and oriental beetle

#### Chromobacterium subtsugae

- GRANDEVO® PTO ! 30% ai
- Chromobacterium subtsugae strain PRAA4-1 and spent fermentation media
- 2-4 lbs/ac f. surface feeders
- 10-20 lbs/ac f. white grubs
- > 2 years shelf life
- OMRI approved



• Performance vs. white grubs can be excellent (80+%) but variable. Might vary with species.

# **Entomopathogenic Fungi**

- facultative lethal parasites of insects
- Beauveria & Metarhizium species
- host range +/- broad; many different strains



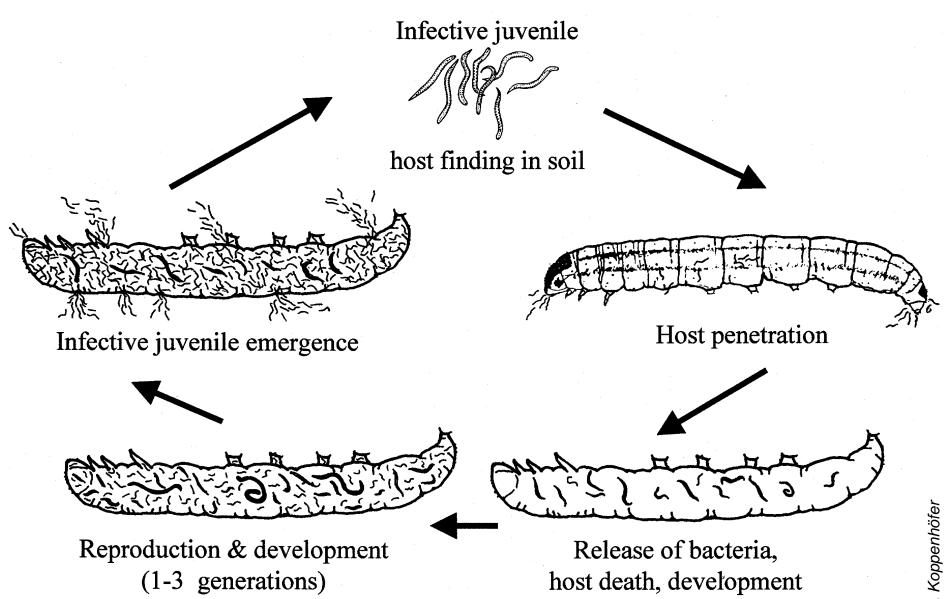
before spore germination after *Metarhizium* sp. (white grub)



*Beauveria* sp. (chinch bug)

# **Entomopathogenic Fungi**

- Fungal spores generally most infective under warm, moist conditions
- Spores sensitive to UV radiation
- B. bassiana (Botanigard, Mycotrol) labeled for turf and billbugs and white grubs
- *M. anisopliae* (Met52) labeled for turf and ticks
- Not much efficacy data.
- Use vs. soil insects in turf questionable because difficult to get spores in soil. (Subsurface applications!!!)




## **Entomopathogenic nematodes (EPN)**

- obligate lethal parasites of insects
- mutualistic association with bacteria
- > 26 *Heterorhabditis* & 100 *Steinernema* spp.
- host searching capacity
- host range +/- broad
- ease of production
- recycling capacity

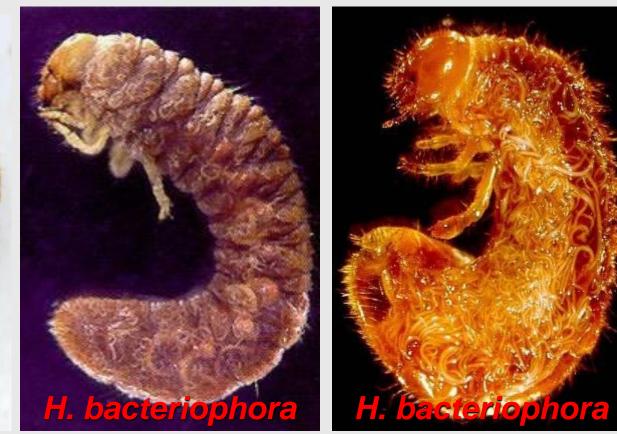


#### Entomopathogenic nematode life cycle








Y. Wang

#### H. bacteriophora

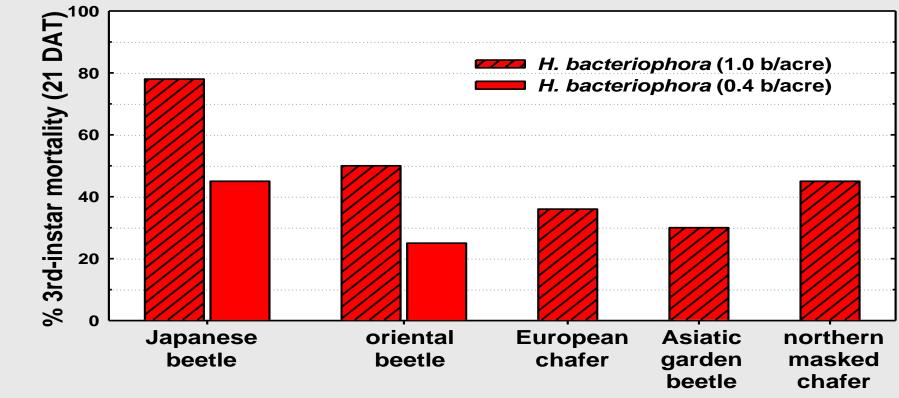
S. scarabaei

A. Koppenhöfer

# **EPN Infections**

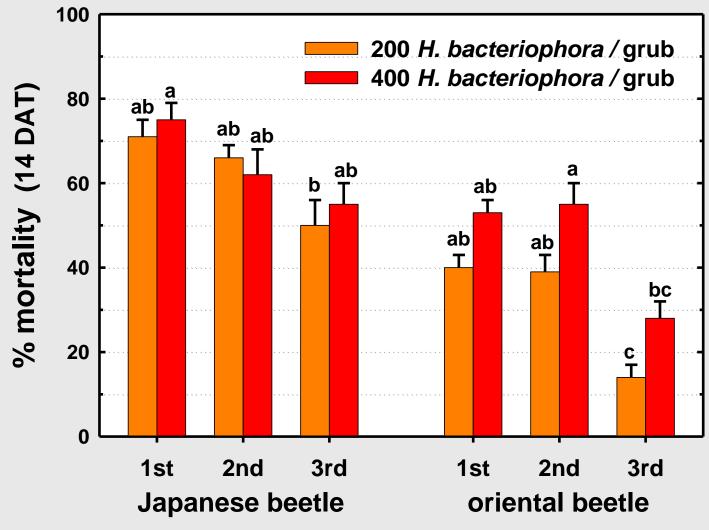


#### Nematode products for US turf market


| Nematode        | Targets <sup>1</sup> | Product (Producer)      |  |  |  |  |  |  |
|-----------------|----------------------|-------------------------|--|--|--|--|--|--|
| Steinernema     | BCW,                 | Milenium (BASF),        |  |  |  |  |  |  |
| carpocapsae     | SWW, AW,             | Capsanen (Koppert),     |  |  |  |  |  |  |
|                 | BB, Fleas            | Ecomask (BioLogic)      |  |  |  |  |  |  |
| Heterorhabditis | WG, BB               | Nemasys G (BASF),       |  |  |  |  |  |  |
| bacteriophora   |                      | Terranem NAm (Koppert), |  |  |  |  |  |  |
|                 |                      | Heteromask (BioLogic)   |  |  |  |  |  |  |
| Steinernema     | WG                   | Nemagard (Lawn Life)    |  |  |  |  |  |  |
| searabaei       |                      |                         |  |  |  |  |  |  |

<sup>1</sup>BCW = black cutworm; SWW = sod webworm; AW = armyworm BB = billbugs; WG = white grubs; MC = mole crickets

## White grub species and EPN efficacy


Summary of multiple field experiments

#### **Applications around mid-September**

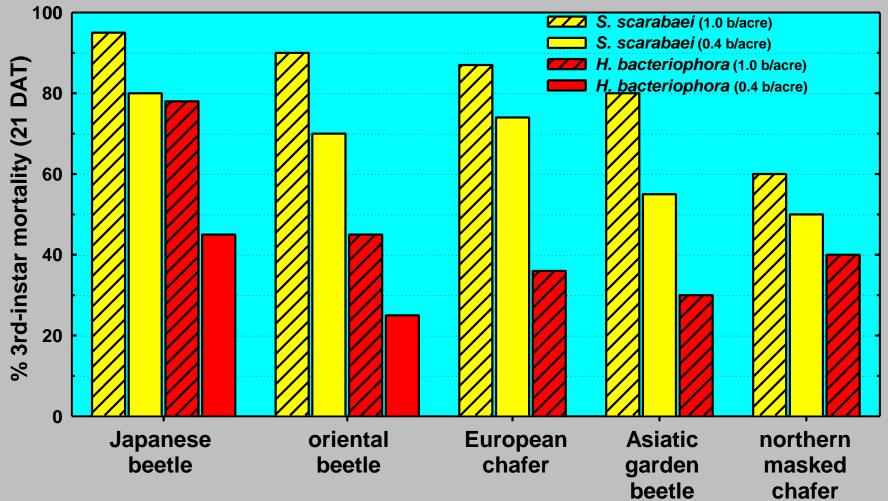


- JB control feasible.
- Other species less susceptible. 2 b/acre necessary?
- Earlier applications vs. younger stages?

### White grub larval stage and EPN efficacy Lab test: 1 grub / 1-oz cup



Koppenhöfer & Fuzy 2004


## New EPN species for better white grub control

- Presently available nematodes like *Heterorhabditis bacteriophora* are effective against Japanese beetle but less or not against other white grub species.
- Steinernema scarabaei, isolated from Japanese and oriental beetle larvae in central NJ, is highly virulent and specific to many white grub species.





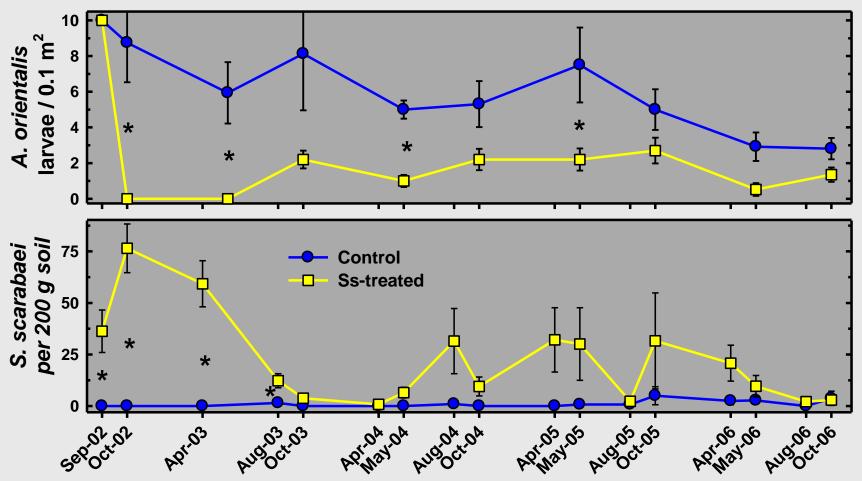
### White grub species and EPN efficacy Summary of multiple field experiments Applications around mid-September



Koppenhöfer & Fuzy 2003 Cappaert & Koppenhöfer 2003

### Japanese Beetle Life Cycle (NJ latitude)






Nematode: *H. bacteriophora* Application time: early August to late September Optimal time: mid-August to early September (target L1+L2)



Nematode: *S. scarabaei* Application time: mid-August to mid-October / May Optimal time: late-August to mid-September (target L2+L3)

### S. scarabaei long-term Effects



- Ss: 0.16, 0.4, 1.0 b/ha  $\rightarrow$  nsd  $\rightarrow$  Ss rates combined
- Ss suppresses Ao; effect becomes variable over time
- Ss persists in plots for up to 4 years.

Koppenhöfer & Fuzy 2009

## Long-term suppression of oriental beetle in turfgrass by *S. scarabaei*

Field experiments (16 ft<sup>2</sup> microplots, 10 L3/ft<sup>2</sup>)

|            | Months after S. scarabaei-Application |        |       |       |           |        |       |
|------------|---------------------------------------|--------|-------|-------|-----------|--------|-------|
| Ss rate*   | 1                                     | 8      | 13    | 20    | <b>25</b> | 32     | 37    |
| (× b/acre) | (Oct)                                 | (May)  | (Oct) | (May) | (Oct)     | (May)  | (Oct) |
| 0.16 – 1.0 | 86-100                                | 96-100 | 62-92 | 69-94 | 0-94      | 63-100 | 0-64  |
| 0.04 – 0.1 | 50-77                                 | 86-100 | 76-77 | 93-95 | 33-50     | 67-83  | 55-88 |

\*Standard application rate for EPN: 1 billion per acre

Koppenhöfer & Fuzy 2009



Turf Insect ID & Biology

# Biorational Controls Organic Options Minimum Risk Insecticides

# "Minimum-risk" pesticides (EPA)

- <u>http://www.epa.gov/oppbppd1/biopesticides/</u> regtools/25b\_list.htm
- Special class of pesticides not subject of federal registration requirements because ingredients are safe for intended use → FIFRA 25(b) Exemption
- Active ingredients must be on list.
- Inert ingredients on List 4A "Inert Ingredients of Minimal Concern"

# Actives exempt under 25(b) FIRFA

| Castor oil                 | Dried blood            | Peppermint (oil)            |  |
|----------------------------|------------------------|-----------------------------|--|
| Cedar oil                  | Eugenol                | Potassium sorbate           |  |
| Cinnamon (oil)             | Garlic (oil)           | Rosemary (oil)              |  |
| Citric acid                | Geraniol               | Sesame (oil)                |  |
| Citronella (oil)           | Geranium oil           | Sodium chloride             |  |
| Cloves (oil)               | Lemongrass oil         | Soybean (oil)               |  |
| Corn gluten meal           | Linseed oil            | Thyme (oil)                 |  |
| Corn (oil)                 | Malic acid             | White pepper                |  |
| Cotton seed (oil)          | Mint (oil)             | Zinc metal strips           |  |
| (Sodium) Lauryl<br>sulfate | 2-Phenethyl propionate | Putrescent whole egg solids |  |

# "Minimum-risk" pesticides (EPA)

- No efficacy data required !!! (except for public health pests)
- May result in products that make wide-reaching control claims with little to no reliable efficacy data behind them.
- →Check with University / Extension personnel if control claims are well-founded and reliable.
- →Check with experienced well-respected peers

# "Low Impact" Pesticides (NJ School IPM Law)

- <u>http://www.nj.gov/dep/enforcement/pcp/ipm-</u> <u>lowimpact.htm</u>
- Gel, paste, bait formulations
- Botanical insecticides (not synthetic) (e.g., pyrethrins, neem oil)
- Microbe-based insecticides (e.g., *Bt*, *Pp*)
- Biological (i.e., living organisms) (e.g., insectpathogenic nematodes / fungi / bacteria / viruses)

## "Least Toxic" Pest Control Products

- <u>http://www.birc.org/Directory.htm</u>
- The IPM Practitioner's 2015 Directory of Least-Toxic Pest Control Products
- > 2000 products by > 600 suppliers.
- compiled by IPM technical experts
- includes specific product descriptions



**Turf Insect Fact Sheets** 

# http://njaes.rutgers.edu/pubs/

- → Gardening and landscaping → 'Lawns' or 'All gardening and landscaping fact sheets.' FS1007 - sod webworms
  - FS1008 hairy chinch bug
  - FS1009 white grubs
  - FS1013 black cutworm
  - FS1014 nematodes (plant-parasitic)
  - FS1015 billbugs
  - FS1016 annual bluegrass weevil (Hyperodes)
  - FS013 ants
  - FS0025 moles



# My Rutgers Entomology Webpage:

http://entomology.rutgers.edu/personnel/ albrecht-koppenhofer/

- $\rightarrow$  Extension presentations
- $\rightarrow$  Extension publications



Niemczyk H.D., Shetlar D.J. 2000. Destructive turf insects, 2<sup>nd</sup> edition. H.D.N. Books. 148pp.

- Vittum P.J., Villani M.G., Tashiro H. 1999. Turfgrass insects of the United States and Canada. Cornell University Press. 496pp.
- Potter D.A. 1998. Destructive turfgrass insects. Ann Arbor Press. 344pp.
- Brandenburg R.L., Freeman C.P. 2012. Handbook of turfgrass insect pests, 2<sup>nd</sup> edn. Entomological Society of America. 136pp.
- Watschke T.L., Dernoeden P.H., Shetlar D.J. 1994. Managing turfgrass pest. Lewis Publishers. 361pp.